

August 2025

UD22-097

Functional Servicing and Stormwater Management Report

Project: 20 Cairns Crescent, Huntsville Client: 1000120857 Ontario Inc.

Lithos Group Inc. 150 Bermondsey Road Toronto, ON M4A-1Y1 Tel: (416) 750-7769

Email: info@LithosGroup.ca

PREPARED BY:

Stergios Grigoriadis, P.E., M.A.Sc. **Project Designer**

REVIEWED BY:

Dimitra Frysali, P.E., M.A.Sc. **Civil Unit Leader, Municipal Infrastructure**

AUTHORIZED FOR ISSUE BY: LITHOS GROUP INC.

Nick Moutzouris, P.Eng., M.A.Sc. **Principal**

Identification	Date	Description of issued and/or revision		
FSR/SWM Report August 02 nd , 2024		Issued for CPP		
FSR/SWM Report	August 18 th , 2025	Issued for CPP		

Statement of Conditions

This Report / Study (the "Work") has been prepared at the request of, and for the exclusive use of, the Owner / Client, the Town of Huntsville and its affiliates (the "Intended User"). No one other than the Intended User has the right to use and rely on the Work without first obtaining the written authorization of Lithos Group Inc. and its Owner. Lithos Group Inc. expressly excludes liability to any party except the intended User for any use of, and/or reliance upon, the work.

Neither possession of the Work, nor a copy of it, carries the right of publication. All copyright in the Work is reserved to Lithos Group Inc. The Work shall not be disclosed, produced or reproduced, quoted from, or referred to, in whole or in part, or published in any manner, without the express written consent of Lithos Group Inc. and the Owner.

Executive Summary

Lithos Group Inc. (Lithos) was retained by 1000120857 Ontario Inc. (the "Owner") to prepare a Functional Servicing and Stormwater Management (FSR-SWM) Report in support of CPP for a proposed residential development at 20 Crains Crescent (ON P1H 1Y3) in the Town of Huntsville (the "Town"). The following is a summary of our conclusions:

Storm Drainage

The site's stormwater discharge will be controlled for storm events ranging from the 2-year up to the 100-year flow to match the pre-development conditions. Post-development flows from the property, which will be directed towards the detention pond, must be controlled to meet the pre-development target flows for storm events up to the 100-year storm event. In order to attain the target flows and meet the Town's Wet Weather Flow Management Guidelines (WWFMG), quantity control will be utilized and up to 212.2 m³ of on-site storage will be required. The stormwater management (SWM) system will be designed to provide enhanced level (Level 1) protection as specified by the Ministry of Environment, Conservation and Parks (MECP). Additional quality control measures will also be required by the MECP, will be provided by the proposed detention pond.

Sanitary Sewers

The proposed development will connect to the existing 200mm diameter sanitary sewer on Cairns Crescent, through a 150mm diameter sanitary sewer lateral connection, with a minimum grade of 2.00% (or equivalent pipe design). Under pre-development conditions, the site discharges approximately 0.61 L/s into the Town's sanitary sewer network. Under post-development conditions, the discharge is expected to increase to 5.93 L/s. Therefore, the net increase in sanitary flow resulting from the proposed development, is anticipated at approximately 5.32 L/s.

Water Supply

Water supply for the site will be provided by the existing 150mm diameter watermain on Cairns Crescent. It is anticipated that a total design flow of 153.55 L/s will be required to support the proposed development. In summary, the required design flow is the sum of 'the minimum fire suppression flow' and 'maximum daily demand' (150.00 + 3.55 = 153.55 L/s, 2434 USGPM).

Site Grading

The proposed grades will match current drainage pattern and will improve the existing drainage conditions to meet the Town's/Regional requirements. Grades will be maintained along the property line wherever feasible and overland flow will be directed towards the adjacent right-of-way (ROW).

Table of Contents

1.0	Introduction	1
2.0	Site Description	1
3.0	Site Proposal	1
4.0	Terms of Reference and Methodology	2
4.1.	Terms of Reference	2
	Methodology: Stormwater Drainage and Management	
	Methodology: Sanitary Discharge	
	Methodology: Water Usage	
5.0	Stormwater Management and Drainage	3
5.1.	Existing Conditions	
5.2.	Stormwater Management	4
	5.2.1. Quantity Controls	5
	5.2.2. Quality Controls	6
	5.2.3. Proposed Detention Pond	6
	5.2.4. Proposed site grading to the detention pond	7
	5.2.5. Water Balance	7
6.0	Sanitary Drainage System	
	Existing Sanitary Drainage System	
6.2.	Existing Sanitary Flows	8
6.3.	Proposed Flows	8
6.4.	Proposed Sanitary Connection	8
7.0	Water Supply System	
7.1.	Existing System	9
7.2.	Proposed Water Supply Requirements	9
7.3.	Proposed Watermain Connections	0
8.0	Site Grading	
	Existing Grades	
8.2.	Proposed Grades1	0
9.0	Erosion and Sediment Control	0
10 0	Conclusions and Recommendations	1

List of Figures

Figure 1 - Location Plan

Figure 2 - Aerial Plan

Figure 3 - Separation Distances

List of Tables

Table 4-1 – Sanitary Flows	:
Table 4-2 – Water Usage	
Table 5-1 – Pre-development Input Parameters	
Table 5-2 – Target Peak Flows	
Table 5-3 - Post-development Input Parameters	
Table 5-4 - Post-development Quantity Control as per Town Requirements	
Table 7-1 – Fire Flow Input Parameters	

Appendices

Appendix A – Site Photographs

Appendix B – Background Information

Appendix C – Storm Analysis

Appendix D – Sanitary Data Analysis

Appendix E – Water Data Analysis

1.0 Introduction

Lithos Group Inc. (Lithos) was retained by 1000120857 Ontario Inc. (the "Owner") to prepare a Functional Servicing and Stormwater Management (FSR-SWM) Report in support of CPP for a proposed residential development at 20 Cairns Crescent (ON P1H 1Y3), in the Town of Huntsville (the "Town").

The purpose of this report is to provide site-specific information for the Town's review with respect to infrastructure required to support the proposed development. More specifically, the report will present details on storm drainage, sanitary discharge and water supply.

We contacted the Town's engineering department to obtain existing information in preparation of this report. The following documents were available for our review:

- Plan and Profile drawings of Watermain on Cairns Crescent and Kitchen Road South, drawing No. 1989-105, dated October 30, 1989;
- Plan and Profile drawings of Sanitary Sewer System on Kitchen Road, Easement between Cairns Crescent and Kitchen Road South, and Cairns Crescent, drawing No. 535-414, drawing No. 535-415, drawing No. 535-416 and drawing No. 535-417, dated December, 1978;
- Plan and Profile drawing of Sanitary Sewer on Cairns Crescent Kitchen Road South, drawing No. M5355, dated June, 1996;
- Plan and Profile drawing of Cairns Crescent Sanitary Sewer Extension, drawing No. 61210278, dated August 21, 2001;
- Site Plan and Site Statistics prepared by Options Architects, dated August 15, 2025; and,
- Topographic Survey prepared by Maughan Surveyors, a division of IBW Surveyors Ltd., dated February 03, 2023.

2.0 Site Description

The existing site is approximately 2.169 hectares of undeveloped land, located on the south side of Cairns Crescent, near Kitchen Road South, in the Town of Huntsville. The site area is bound by residential properties to the north, Kitchen Road South to the east, an apartment building to the west and Hollywood Drive to the south. Refer to Figures 1 and 2 following this report, in Appendix A and Appendix B.

3.0 Site Proposal

The proposed site is approximately 2.169 hectares of residential land. The proposed building will consist of 176 residential units and will be serviced by one (1) level of underground parking. The total development will include approximately 12,467.37 m² of Gross Floor Area (GFA). Please refer to **Appendix B** for the proposed site plan and building site statistics.

Functional Servicing and Stormwater Management Report

4.0 Terms of Reference and Methodology

4.1. Terms of Reference

The following references and technical guidelines were consulted in the present study:

- Engineering Design Criteria and Standards Manual, District of Muskoka (2023);
- Ministry of Environment, Conservation and Park (MECP) Guidelines for the Design of Water Systems (2008);
- MECP Guidelines for the Design of Sanitary Sewage Systems (2008);
- MECP Stormwater Planning and Design Manual (2003);
- Fire Underwriters Survey (FUS) (2020); and,
- Ontario Building Code (2010).

4.2. Methodology: Stormwater Drainage and Management

This report provides a detailed Stormwater Management (SWM) review of the pre-development and post-development conditions, and comments on opportunities to reduce peak flows. This is illustrated on a proposed "Site Servicing plan (SS-01)", submitted separately. Additional requirements set by the WWFMG will be discussed.

The proposed development will be designed to meet the Town's WWFMG and the standards of the Province of Ontario as set out in the Ministry of Environment, Conversation and Parks (MECP) 2003 Stormwater Management Planning and Design Manual (SWMPD). The following design criteria will be reviewed:

- Post-development peak flows for all storm events (2, 5, 10, 25, 50 and 100 year) from the site will be controlled to match pre-development conditions;
- A specified rainfall depth of 5mm is to be retained on-site, as required by the WWFMG; and,
- A safe overland flow will be provided for all flows in excess of the 100-year storm event.

4.3. Methodology: Sanitary Discharge

The sanitary sewage discharge from the site will be determined using sanitary sewer design sheets that incorporate the land use and building statistics as supplied by the design team. The calculated values provide peak sanitary flow discharge that considers infiltration.

The estimated sanitary discharge flows from the proposed site will be calculated based on the criteria shown in Table 4-1.

Functional Servicing and Stormwater Management Report

Table 4-1 - Sanitary Flows

Usage	Design Flow	Units	Population Equivalent
Residential	450	Litres / capita / day	Single Family = 15 ppha Semi-detached = 20 ppha Row dwellings = 40 ppha Apartments = 240 ppha

Based on the calculated peak flows, the adequacy of the existing infrastructure to support the proposed development will be discussed.

4.4. Methodology: Water Usage

The fire flow requirements were estimated using the method prescribed by the Fire Underwriters Survey (FUS). This method is based on the fire protected building floors, the type and combustibility of the structural frame and the separation distances with adjoining building units. The domestic water usage was calculated based on the Ministry of the Environment (MOE), Design Guidelines for Drinking – Water Systems (2008), outlined in Table 4-2, below.

Table 4-2 – Water Usage

Usage	Water Demand	Units
Residential	450	Litres / capita / day

5.0 Stormwater Management and Drainage

5.1. Existing Conditions

The existing site is approximately 2.169 hectares and it is currently occupied by undeveloped land. According to available records, the storm runoff from the existing site is gravity-driven towards Cairns Crescent and is captured by existing road ditches. Please refer to the topographic survey in **Appendix B**. Additionally, there is an external area situated directly behind the adjacent property, which drains towards the site and ultimately discharges into the aforementioned road ditches.

Due to the presence of landscaped areas covering the existing site, the run-off composite coefficient is estimated at 0.25. The input parameters, summarized in **Table 5-1**, are illustrated in the predevelopment drainage area plan in **Figure DAP-1** in **Appendix C**.

Table 5-1 – Pre-development Input Parameters

Drainage Area	Drainage Area (ha)	Actual "C"	Design "C"	Tc (min.)
A1 Pre (Towards Cairns Crescent)	2.169	0.25	0.25	10
EXT Area Pre (External Area ultimately discharges towards Cairns Crescent)	0.727	0.25	0.25	10

Peak flows calculated for the existing conditions are shown in **Table 5-2** below. Detailed calculations are provided in **Appendix C**.

Table 5-2 – Target Peak Flows

Cotoburant	Peak Flow Rational Method (L/s)						
Catchment	2-year	5-year	10-year	25-year	50-year	100-year	
A1 Pre (Towards Cairns Crescent)	110.4	141.9	165.7	195.0	213.8	231.5	
EXT Area Pre (External Area ultimately discharges towards Cairns Crescent)	37.0	47.5	55.5	65.3	71.6	77.6	

As shown in **Table 5-2**, the post-development flows directed towards the detention pond area located in the north-west portion of the site will need to be controlled to match the pre – development conditions for all storm events up to the 100-year storm event. Detailed calculations can be found in **Appendix C**.

5.2. Stormwater Management

In order to meet the Town's Storm Design requirements, post-development flows should be controlled to the pre-development target flows, for all storm events up to the 100-year storm event, as established in **Section 5.1**.

The site consists of three (3) internal drainage areas:

- 1. A1 Post Storm runoff from the rooftop, terraces, hardscaped and landscaped areas, controlled in the surface pond;
- 2. A2 Post Uncontrolled runoff, directed towards Cairns Crescent;
- 3. EXT Area Post Storm runoff from the external area, conveyed through the surface pond.

The post-development drainage areas and runoff coefficients are indicated on Figure DAP-2, in Appendix C and are summarized in Table 5-3.

Table 5-3 - Post-development Input Parameters

Drainage Area	Drainage Area (ha)	"C"	Tc (min.)
A1 Post (Rooftop/Terraces/Landscaped & Hardscaped Areas) - Controlled in surface pond	1.977	0.64	10
A2 Post (Uncontrolled Area) – Towards Cairns Crescent	0.192	0.44	10
EXT Area Post (External Area ultimately discharges towards Cairns Crescent) - Area to be conveyed through surface pond	0.727	0.25	10

The external drainage area, which previously discharged towards Cairns Crescent, will be effectively managed and conveyed through the proposed development. Storm runoff from the designated area will be collected by proposed catch basins and subsequently directed to the proposed detention pond. From there, the discharge will follow the pre-development major drainage pattern, ultimately reaching at Cairns Crescent.

5.2.1. Quantity Controls

As established in **Section 5.1** of this report, storm runoff from the proposed development will be controlled to match the pre-development conditions, for all storm events, up to the 100-year storm event.

Using the Town's intensity-duration-frequency (IDF) data, modified rational method calculations were undertaken to determine the maximum storage required during each storm event. Results for the 2, 5, 10, 25, 50 and 100-year storm events are summarized in **Table 5-4**, below. The detailed post-development quantity control calculations are provided in **Appendix C**.

Table 5-4 - Post-development Quantity Control as per Town Requirements

Storm Event	Target Flow (L/s)	Required Storage Volume (m³)	Release Rate from EXT Area Post (L/s)	Uncontrolled Flow (L/s)	Maximum Controlled Site Release Rate (L/s)
2-year	147.4	105.4	37.0	17.4	93.0
5-year	189.4	133.0	47.5	22.3	119.6
10-year	221.2	155.6	55.5	26.1	139.6
25-year	260.3	182.4	65.3	30.7	164.3
50-year	285.4	198.5	71.6	33.7	180.1
100-year	309.1	212.2	77.6	36.5	195.1

Functional Servicing and Stormwater Management Report

As shown in **Table 5-4**, in order to control post-development flows, for all events to match predevelopment conditions, a target flow of 309.1 L/s is to be satisfied. The maximum required storage volume is calculated at 212.2 m³. The required on-site storage will be accommodated by the use of a detention pond area with a depth of 2.7 m, located at the north-west portion of the site. Detailed calculations supporting this design approach are available in **Appendix C**.

During a 100-year storm event, the maximum controlled site release rate, towards the right-of-way, is estimated at 195.1 L/s. The maximum controlled site release rate includes contributions from both the uncontrolled drainage area (Drainage Area A2 Post) and the external drainage area (EXT Area Post). Storm runoff from the external area will be conveyed through the detention pond and ultimately directed toward Cairns Crescent, maintaining the pre-development major drainage pattern. For storm events exceeding the 100-year design storm, the proposed stormwater management system is designed to safely overflow towards the adjacent right-of-way.

5.2.2. Quality Controls

Stormwater treatment must meet Enhanced Protection criteria as defined by the MECP 2003 SWMPD Manual, including a minimum 80% of total suspended solids removal (TSS).

Permanent Pool- Quality Control

According to Table 3.2 Water Quality Storage Requirements based on Receiving Waters of the MOE SWMP Manual Guidelines, dated March 2003, and taking into account that the ratio of impervious level is equal to 60%, a minimum 161.7 m³/ha will be stored and infiltrated in order to achieve a minimum 80% of total suspended solids removal (TSS), while the volumetric quality control criteria are fulfilled. The required storage volume that will be required for the permanent pool has been calculated at 319.68 m³.

Extended Detention quality control

Based on the MOE SWMP Guidelines for wet facilities, 40 m³/ha is required for extended detention, resulting in an additional volume of 79.08 m³ to be retained on-site. Therefore, the total required storage volume for quality control purposes is estimated at 398.76 m³.

5.2.3. Proposed Detention Pond

As mentioned above, storm runoff from the rooftops, walkways, hardscaped and landscaped areas will be gravity-driven into the proposed detention pond through an internal storm sewer system. The proposed detention pond has been designed in accordance with the MOE SWMP Manual Guidelines, providing water quality erosion and quantity control.

Using the MOE SWMP Manual Guidelines, the minimum permanent pool volume has been calculated at 319.68 m³. This volume is the minimum required permanent pool volume in the detention pond in order to provide Level 1 treatment for 60% impervious area as specified in Table 3.2 on MOE SWMP Manual Guidelines. Based on the detailed calculations provided in **Appendix C**, the proposed detention pond has been designed to provide a minimum of 398.76 m³ for quality control purposes. In addition, the pond has been designed to accommodate above 664.21 m³ for quantity control.

The following criteria have been met, ensuring public safety and proper functionality of the proposed detention pond:

- The maximum permanent pool depth has been calculated at 2.7 meters. As per MOE SWMP Manual Guidelines the permanent pool depth should be between 1 to 3 meters.
- The minimum length-to-width ratio of 3:1 has been maintained in the permanent detention pool providing a proper flow path and quality control. In addition, side slopes of 4:1 have been maintained in the extended detention portion of the pond as per MOE Guidelines.
- The proposed detention pond has been designed to include a sediment forebay to enhance stormwater quality through the removal of suspended pollutants. The forebay has a depth of 1.0m and a length-to-width ratio greater than 2:1. Both inlets to the detention pond have been located within the forebay to improve overall treatment performance.
- A minimum freeboard of 0.30 m above the maximum elevation has been included in the design.
- The emergency overflow spillway/weir has been included to safely convey peak flows from the 100-year event.

The total required storage volume for quality control is approximately 398.76 m³. The detailed volume control calculations will be provided at a later stage.

5.2.4. Proposed site grading to the detention pond

According to the latest topographic survey, a combination of 3:1 and 4:1 slopes has been proposed along the northwest property limits, in order to meet the existing elevations. The proposed grading has been designed to provide major overland flow paths towards the proposed detention pond.

Refer to Site Grading and Site Servicing plans included in civil engineering drawings "Site Grading Plan (SG-01)" and "Site Servicing Plan (SS-01)", respectively (submitted separately).

5.2.5. Water Balance

The Town's WWFMG requires 5 mm of onsite runoff from any rainfall event to be retained over the entirety of the site. A 5 mm of rainfall over the entire site equates to a required water balance volume of 108.47 m³. Based on the initial abstraction values, the site will provide 58.67 m³ of initial abstraction in post-development conditions. The remaining 49.80 m³ will need to be stored and utilized within 72 hours.

In addition, the sediment forebay is designed to receive storm runoff and enhance pollutant removal, ensuring the water is considered clean. The proposed Wet Detention Pond has been designed to accommodate the Volumetric Quality as per MOE Guidelines. Taking into account that the proposed Pond is designed as a "Wet Pond" the respective volume will be infiltrated on-site ensuring that the infiltration target is fulfilled.

Functional Servicing and Stormwater Management Report

6.0 Sanitary Drainage System

6.1. Existing Sanitary Drainage System

The subject site is located on the south side of Cairns Crescent, as indicated by the topographic survey in **Appendix B**.

It is currently occupied by undeveloped land. According to available records, there are two (2) sanitary sewers abutting the subject property. More specifically:

- A 200mm to 350mm diameter sanitary sewer along Cairns Crescent flowing west;
- A 250mm diameter sanitary sewer along Kitchen Road South flowing north.

6.2. Existing Sanitary Flows

Given that the subject site ultimately discharges towards the existing sanitary network along Cairns Crescent, the total discharge flow was compared to the existing flow to quantify the net increase in the sanitary sewer. Using the design criteria outlined in **Section 4.3** and available site information, the existing sanitary discharge flow from the site is estimated at 0.61 L/s. For detailed calculations refer to the sanitary sewer design sheet in **Appendix D**.

6.3. Proposed Flows

According to the proposed development statistics, as well as the design criteria outlined in **Section 4.3**, the new building will discharge a total flow of 5.93 L/s (5.32 L/s of sanitary flow and 0.61 L/s of infiltration) into the Town's infrastructure.

The additional flow will be considered within the sanitary discharge rate, therefore, there is an increase in sanitary flow of approximately 5.32 L/s (5.928 L/s - 0.607 L/s). For detailed calculations refer to the sanitary sewer design sheet in **Appendix D**.

6.4. Proposed Sanitary Connection

The proposed development will connect to the existing 200mm diameter sanitary sewer on Cairns Crescent through a 150 mm diameter sanitary sewer connection at a minimum grade of 2.00% (or equivalent pipe design). Refer to engineering drawing "Site Servicing Plan (SS-01)" (submitted separately) for more details.

7.0 Water Supply System

7.1. Existing System

Based on plans provided by the Town, the existing watermain system consists of the following waterlines:

- A 150 mm diameter watermain along Cairns Crescent; and
- A 150 mm diameter watermain along Kitchen Road South.

7.2. Proposed Water Supply Requirements

The estimated water consumption was calculated based on the occupancy rates shown on Table 4-2, according to the Ministry of the Environment (MOE), Design Guidelines for Drinking – Water Systems (2008).

It is anticipated that an average consumption of approximately 1.29 L/s (111,456 L/day), a maximum daily consumption of 3.55 L/s (306,720 L/day) and a peak hourly demand of 5.33 L/s (19,188 L/hr) will be required to service this development with domestic water. Detailed calculations are found in **Appendix E**.

The fire flow requirements were estimated using the method prescribed by the Fire Underwriters Survey (FUS 2020) be undertaken to assess the minimum requirement for fire suppression. The fire flow calculations are normally conducted for the largest storey, by area, and for the two immediately adjacent storeys.

As a result to the above mentioned method, we have selected Levels 1, 2 and 3 which result the maximum fire flow requirement for this development (worst case scenario).

Table 7-1 below illustrates the input parameters used for the FUS 2020 calculations. According to our calculations, a minimum fire suppression flow of approximately 150.00 L/s (2378 USGPM) will be required. Refer to detailed calculations found in **Appendix E**.

Parameter	Frame used Combustibility		Presence of	Separation Distance			
	for Building	of Contents	Sprinklers	North	East	West	South
Value according to FUS options	Non- Combustible Construction	Non- Combustible	Yes	10.1m- 20m	10.1m- 20m	>30m	>30m
Surcharge/reduction from base flow	0.8	25%	30%	15%	15%	0%	0%

Table 7-1 – Fire Flow Input Parameters

In summary, the required design flow is the sum of 'the minimum fire suppression flow' and 'maximum daily demand' (150.00 + 3.55 = 153.55 L/s (2434 USGPM)).

Functional Servicing and Stormwater Management Report

7.3. Proposed Watermain Connections

The proposed development will be serviced by a 150mm diameter fire and a 100mm diameter domestic water service. The proposed water service will be connected to the existing 150mm diameter watermain on Cairns Crescent. For details refer to the engineering drawing "Site Serving Plan (SS-01)" (submitted separately).

8.0 Site Grading

8.1. Existing Grades

The existing site is approximately 2.169 hectares and it is occupied by undeveloped land. According to available records, the storm runoff from the existing site is gravity driven towards Cairns Crescent and is captured by existing road ditches. Please refer to the topographic survey in **Appendix B**. Additionally, there is an external area situated directly behind the adjacent property, which drains towards the site and eventually discharges into the aforementioned road ditches.

8.2. Proposed Grades

The proposed grades will improve the existing drainage conditions to meet the Town's requirements. Grades will be maintained along the property line wherever feasible and overland flow will be directed towards the adjacent right of ways (ROW).

9.0 Erosion and Sediment Control

Erosion and sediment control (ESC) measures will be designed and will include sediment fencing, a construction access driveway and temporary sediment control facilities where required. These measures will be designed and constructed in accordance with the Ministry of Transportation of Ontario (MTO) Drainage Management Manual (1997) and the Ministry of the Environment (MOE) Stormwater Management Planning and Design Manual (2003), as well as all applicable municipal and regional requirements. The detailed "Erosion Control Plan (EC-01)" will be approved by the Municipality and Region prior to any site alteration be undertaken. All reasonable measures will be taken to ensure sediment loading to the adjacent properties and storm sewers is minimized both during and following construction.

Proposed erosion and sediment control measures shall be inspected promptly after storm events and shall be repaired or replaced if/where damaged. In addition, it is advised that precipitation accumulated within site excavation during the duration of construction shall be dealt with as part of the short-term (construction) groundwater dewatering program.

Moreover, all waste material, including any hazardous contaminated excess soils, shall be removed and disposed of off-site by the Owner in accordance with Ministry of the Environment, Conservation and Parks regulations and all other applicable statutory requirements.

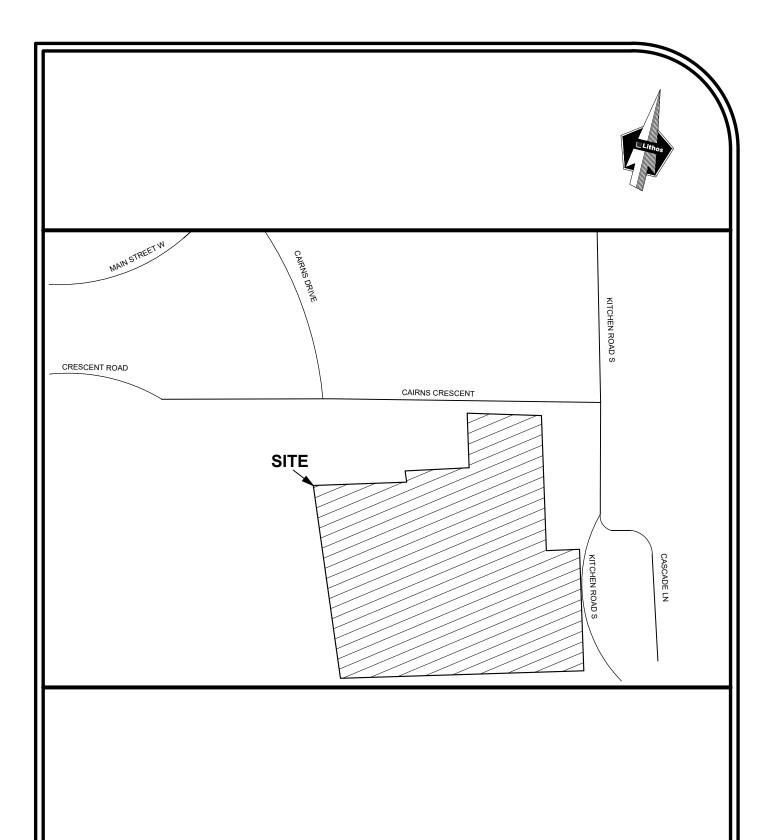
For further details refer to engineering drawing "Erosion Control Plan (EC-01)" (submitted separately).

Functional Servicing and Stormwater Management Report

10.0 Conclusions and Recommendations

Based on our investigations, we conclude the following:

Storm Drainage


The site's stormwater discharge will be controlled for storm events ranging from the 2-year up to the 100-year flow to the pre-development conditions. Post-development flows from the property, which will be directed towards the detention pond, must be controlled to meet the pre-development target flows for storm events up to the 100-year storm event. In order to attain the target flows and meet the Town's Wet Weather Flow Management Guidelines (WWFMG), quantity control will be utilized and up to 212.2 m³ of on-site storage will be required. The stormwater management (SWM) system will be designed to provide enhanced level (Level 1) protection as specified by the Ministry of Environment, Conservation and Parks (MECP). Additional quality control measures will also be required by the MECP, will be provided by the proposed detention pond.

Sanitary Sewers

The proposed development will connect to the existing 200mm diameter sanitary sewer on Cairns Crescent, through a 150mm diameter sanitary sewer lateral connection, with a minimum grade of 2.00% (or equivalent pipe design). Under pre-development conditions, the site discharges approximately 0.61 L/s into the Town's sanitary sewer network. Under post-development conditions, the discharge is expected to increase to 5.93 L/s. Therefore, the net increase in sanitary flow resulting from the proposed development, is anticipated at approximately 5.32 L/s.

Water Supply

Water supply for the site will be provided by the existing 150mm diameter watermain on Cairns Crescent. It is anticipated that a total design flow of 153.55 L/s will be required to support the proposed development. In summary, the required design flow is the sum of 'the minimum fire suppression flow' and 'maximum daily demand' (150.00 + 3.55 = 153.55 L/s, 2434 USGPM).

LOCATION PLAN

RESIDENTIAL USE DEVELOPMENT 20 CAIRNS CRESCENT HUNTSVILLE, ONTARIO

DATE:	AUGUST 2025	PROJECT No:	UD22-097
SCALE:	N.T.S.	FIGURE No:	FIG 1

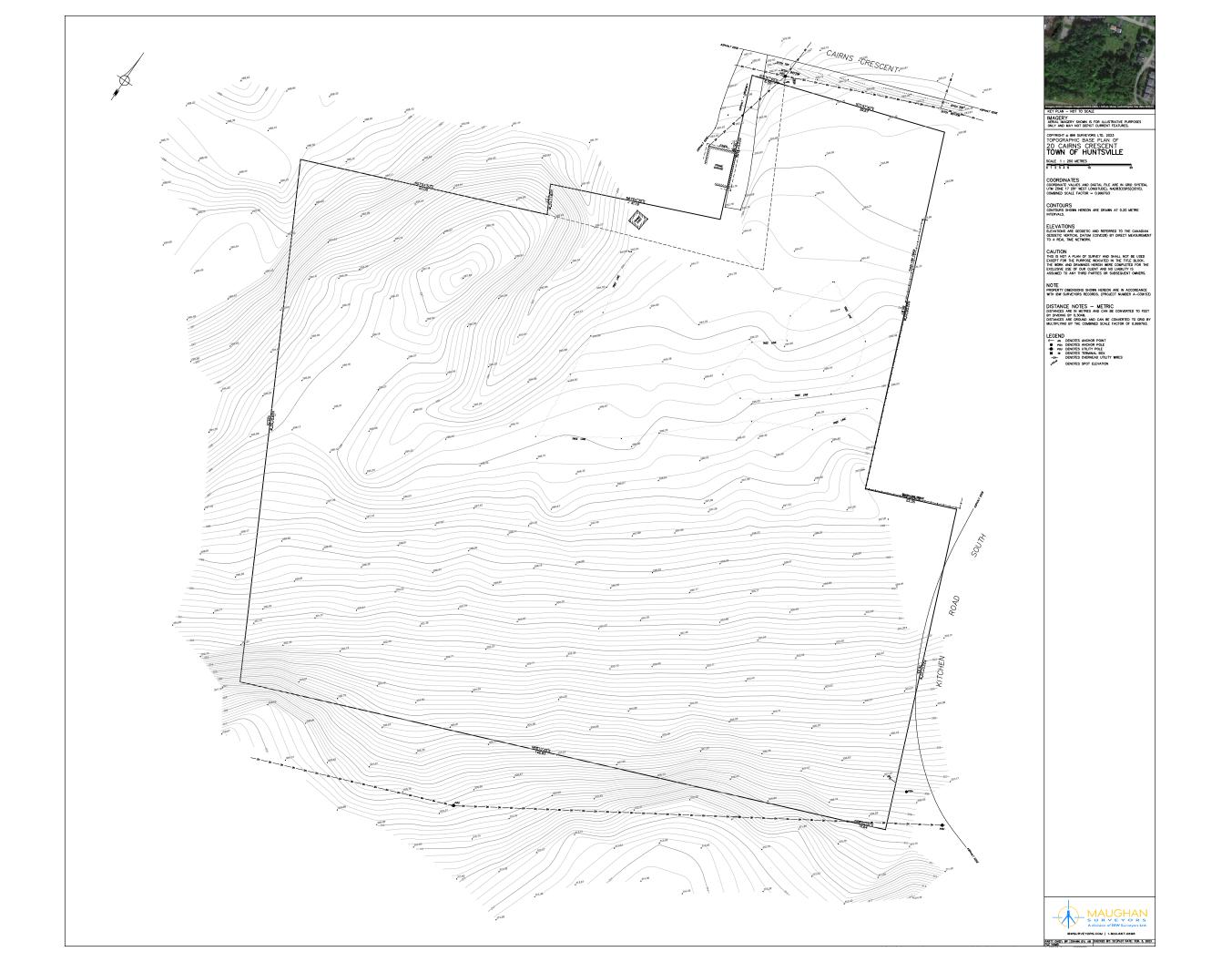
150 Bermondsey Road, North York, Ontario, M4A 1Y1

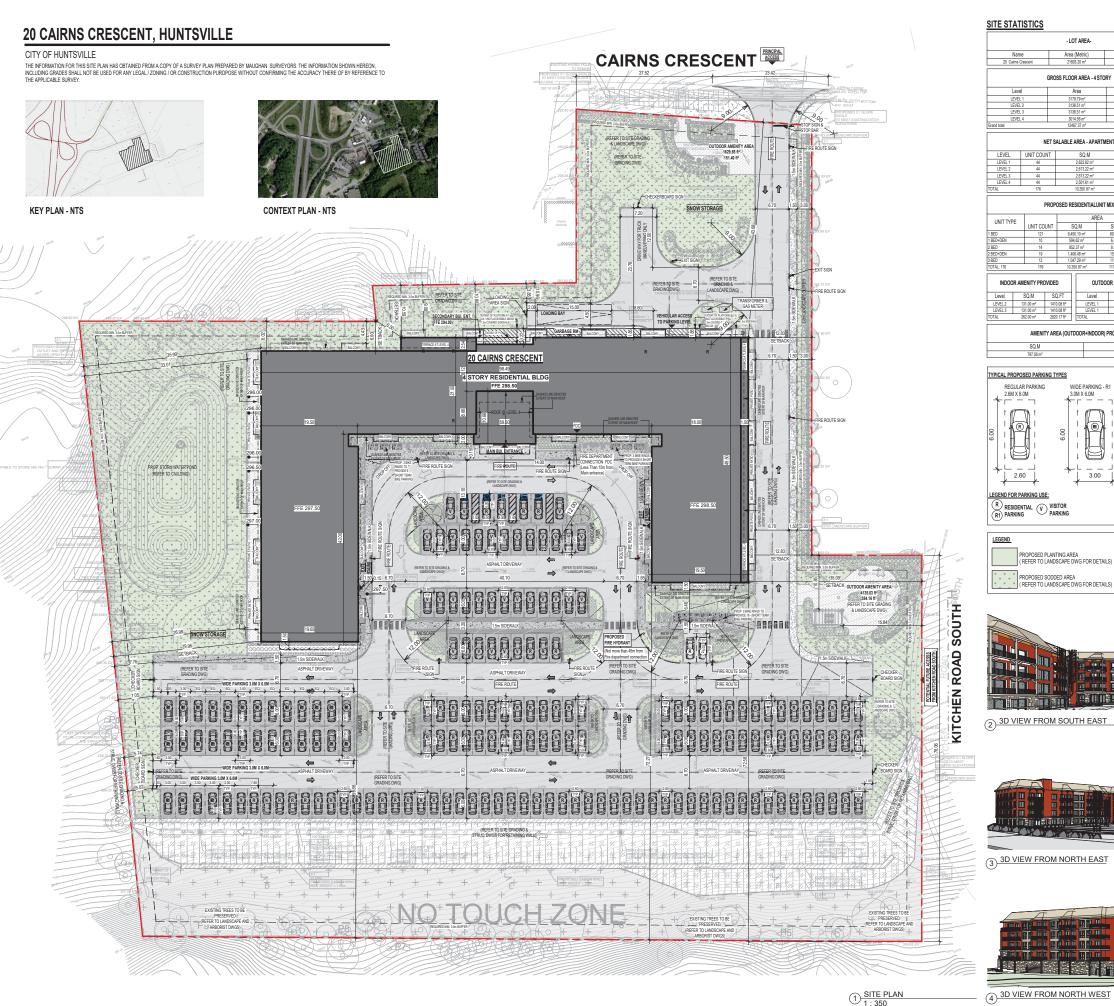
AERIAL PLAN
RESIDENTIAL USE DEVELOPMENT
20 CAIRNS CRESCENT
HUNTSVILLE, ONTARIO

	DATE:	AUGUST 2025	PROJECT No:	UD22-097
150 Bermondsey Road, North York, Ontario, M4A 1Y1	SCALE:	N.T.S.	FIGURE No:	FIG 2

Appendix A

Site Photographs

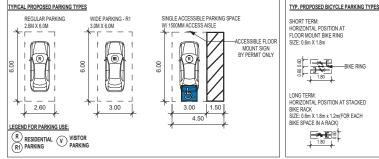

North-West side of the property along Cairns Crescent facing South-East



North-East corner of the property along Cairns Crescent facing South-West

Appendix B

Background Information


	- LOT AREA-		ZONING INFORMATION -COMMUNITY I	LANNING PERMIT BY-LAY	N 2022-97 - R4
Name	Area (Metric)	Area (Imperial)		ALLOWED /	
20 Cairns Crescent	21693.20 m²	233504 ft²	ITEM NAME	REQUIRED	PROPOSED
			East Yard Setback		12.83 m
	GROSS FLOOR AREA - 4 STO	PV	North Yard Setback		6.0 m
,	ONOGO I EGGINANEA - 4010		South Yard Setback		59.72 m
Level	Area	Area	West Yard Setback		29.96 m
LEVEL 1	3179 79 m²	34226 93 ft ²	Building Height	11.0m	19.55m
			Lot Coverage		15%
LEVEL 2	3136.51 m²	33761.16 ft²	GEA		12467 sq.m
LEVEL 3	3136.51 m²	33761.16 ft²	Density (FSI)		0.57
LEVEL 4	3014.56 m²	32448.45 ft²			
i total	12467.37 m²	134197.69 ft²	Total Residential Units Proposed		176
	.2.2.30 111		Total Parking Proposed	255	211(INCL. 7 B.F.)


	NETS	ALABLE AREA - APA	ARTMENT					
	HEIO	ALADEL ANEA - AI A	WITH LIVE			PARKING STATISTI	CS - PARKING USE	
L	UNIT COUNT	SQ.M		SQ.FT	REQUIRED			
1	44	2,622.82 m²		28,232 ft²	PARKING USE		TOWN COUNCIL	1
2	44	2,613.22 m²		28,128 ft²	PARRING USE	BY LAW 2022-97	(Endorsed reduced rate)	Ì
3	44	2,613.22 m²		28, 128 ft²	RESIDENTIAL.	220 (1.25 per unit)	176 (1 per unit)	
4	44	2,501.61 m ²		26,927 ft²	VISITOR		-4.1 /	\vdash
	176	10,350.87 m²		111,416 ft²		35 (1 per 5 units)	35 (1 per 5 units)	l
			TOTAL	255	211			
PROPOSED RESIDENTIALUNIT MIX				P.	ARKING STATISTICS - WID	E & ACCCESSIBLE PARK	ING	
YPF		AF	REA	PERCENTAGE	WIDE PARKING	51 (20% of required	42 (20% of required	
IPE	UNIT COUNT	SQ.M	SQ.FT	PERCENTAGE	(3.0m x 6.0m)	parking - 255)	parking - 211)	Ì

594.62 m²	6,400 ft ²	6%	(4.5m x 6.0m)	each 50 beyond 150)	each 50 beyond 150)	(
852.37 m ²	9,175 ft²	8%		dadiroo bojona 100j	odon oo boyona 100)	
1,406.48 m²	15,139 ft²	11%	NOTE: PARKING REQUIRI	MENTS FOLLOWING REQUIRE	MNTS OF COMMUNITY PLANNI	NG PERMIT I

NOTE: MAJORITY OF PARKING SPACES AT P1 LEVEL CAN BE DESIGNATED FOR EV PARKIN

DOOR AMENITY PROVIDED OUTDOOR AMENITY PROVIDED				
SOOK AMENITI PROVIDED		TOTAL PROPOSED BICYCLE PARKING		
SQ.FT Level SQ.M S	GQ.FT	TOTAL THOI COLD BIOTOLL FAI	iuno	
1410.08 ft ² LEVEL 1 384.16 m ² 41	35.03 ft ² PARKING	TYPE LOCATION	COUNT	
1410.08 ft ² LEVEL 1 151.40 m ² 16	29.65 ff	THE EDUKTION		
2820.17 ft ² TOTAL 535.56 m ² 57	64.69 ft SHORT T	TERM SURFACE LEVEL	30 (0.17 per unit)	
TY AREA (OUTDOOR+INDOOR) PROVIDED	LONG T	ERM P1 LEVEL	66 (0.375 per unit)	
IT AREA (OUTDOOR+INDOOR) PROVIDED	TOTA	L	95 (0.53 per unit)	
20 FT				

(2) 3D VIEW FROM SOUTH EAST

(3) 3D VIEW FROM NORTH EAST

(4) 3D VIEW FROM NORTH WEST

ID DATE | ISSUE/REVISION | BY

1	2023-01-20	For Review	PN
2	2023-03-03	For Review	PN
3	2023-05-10	For Review & Coordination	PN
4	2023-06-16	For Review & Coordination	PN
5	2023-08-11	For Review & Coordination	PN
6	2023-08-23	For Site Plan Application	PN
7	2024-01-30	For Review & Coordination	PN
8	2024-07-17	For Review & Coordination	PN
9	2024-07-23	For Review & Coordination	PN
10	2024-08-02	For First Submission of Class 3 Major CPP	PN
11	2024-12-10	For Review	PN
12	2024-12-24	For Coordination	PN
13	2025-05-02	For Coordination	PN
14	2025-06-25	For Coordination	PN
15	2025-07-04	For Coordination	PN
16	2025-07-07	For Coordination	PN
17	2025-08-01	For Coordination	PN
18	2025-08-13	For Second Submission of Class 3 Major CPP	PN
19	2025-08-15	For Second Submission of Class 3	PN

All Drawings, Specifications and Related Documents are the property of Options Architect Inc., the copyright in the same being reserved to

them.

Reproduction of Drawings, Specifications and Related Documents in part or whole is not permitted without the written permission of Options Architects Inc.

permission under permis

RESIDENTIAL APARTMENT

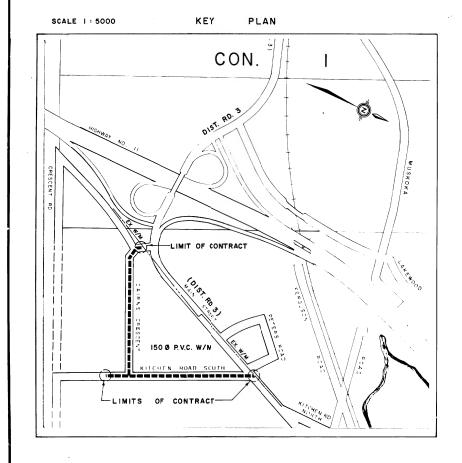
20 CAIRNS CRESCENT, HUNTSVILLE

SITE PLAN

MH Sheet No: PN 111-22 Date: August, 2025

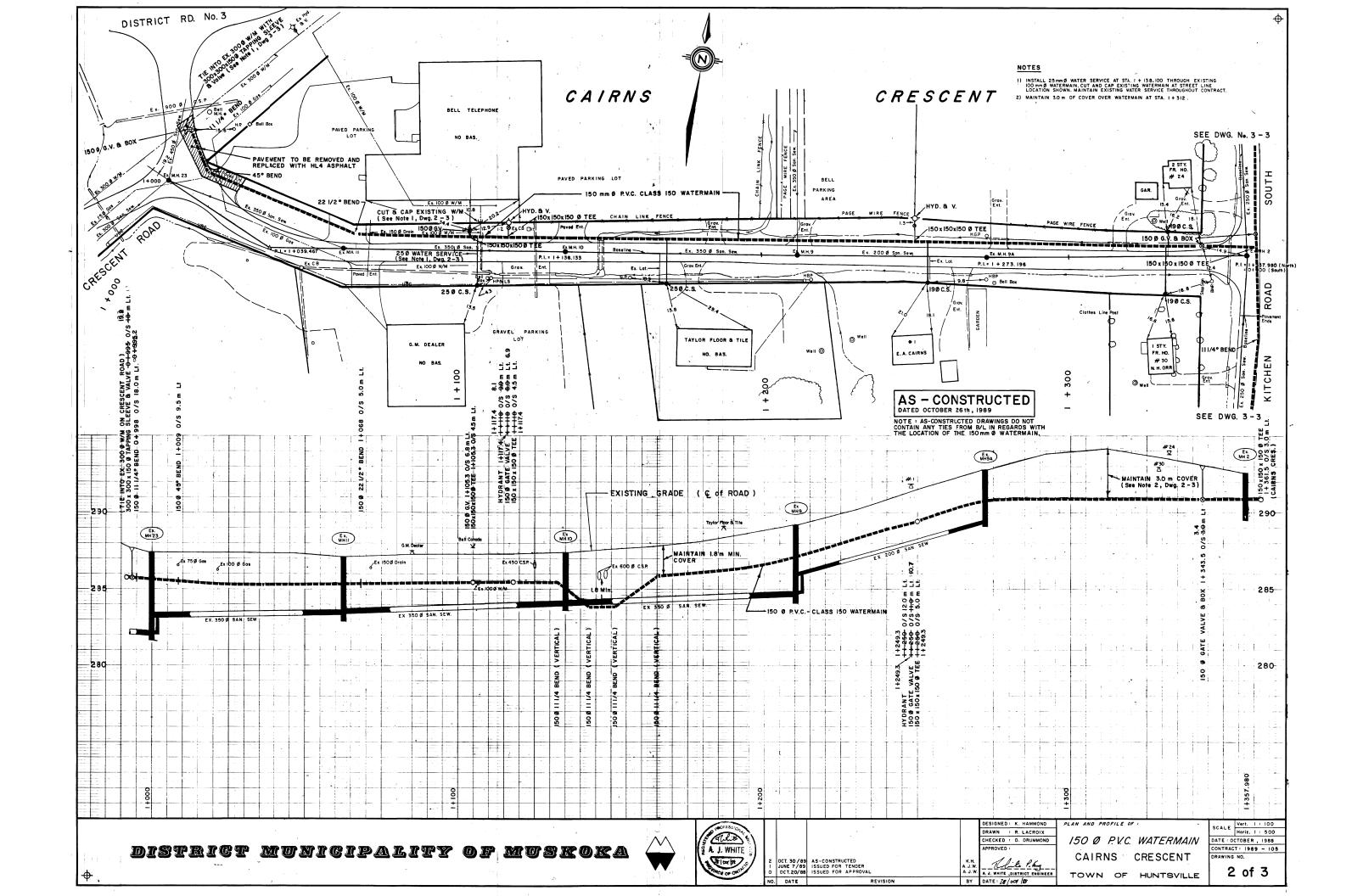
A1.01

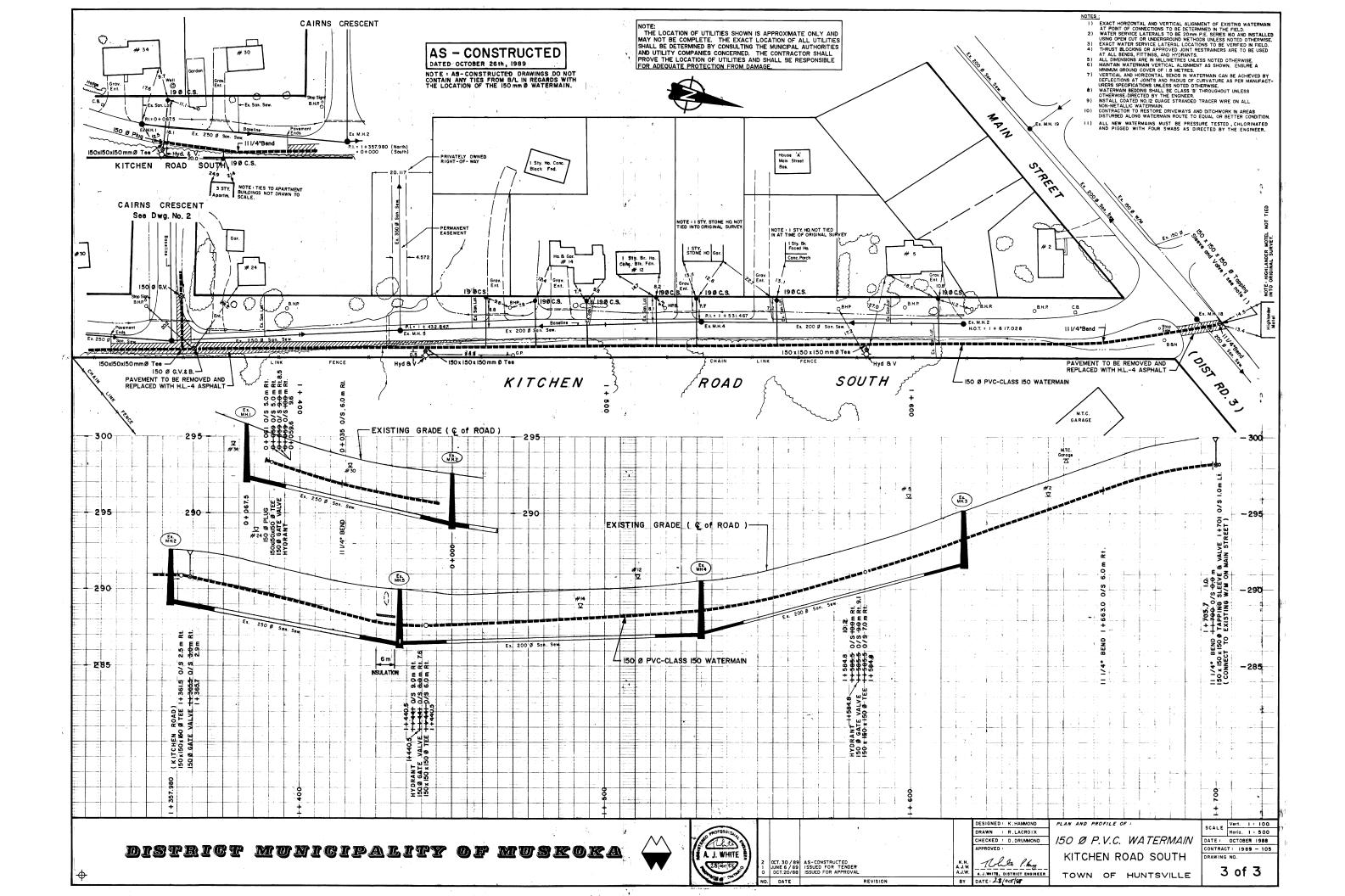
Scale: As indicated


MUSIKOIKA -

PROPOSED WATERMAIN

CAIRNS CRESCENT AND KITCHEN ROAD SOUTH


TOWN OF HUNTSVILLE



CONTRACT NO. 1989 - 105

A. J. WHITE P. ENG. DISTRICT ENGINEER

	DRAWING
SHEET NO.	DESCRIPTION
1	TITLE SHEET, INDEX & KEY PLAN
2	CAIRNS CRESCENT WATERMAIN, FROM CRESCENT ROAD TO KITCHEN RD. SOUTH
3	SOUTH KITCHEN ROAD WATERMAIN, FROM CAIRNS CRESCENT TO DIST. RD. 3

SEWERS

535 - 415 KITCHEN ROAD SOUTH

535 - 416 EASEMENT BETWEEN CAIRNS

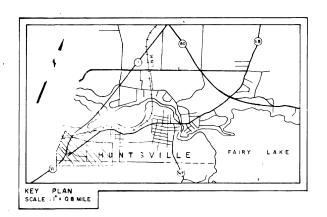
CRESCENT AND KITCHEN ROAD SOUTH

535 - 417 CAIRNS CRESCENT

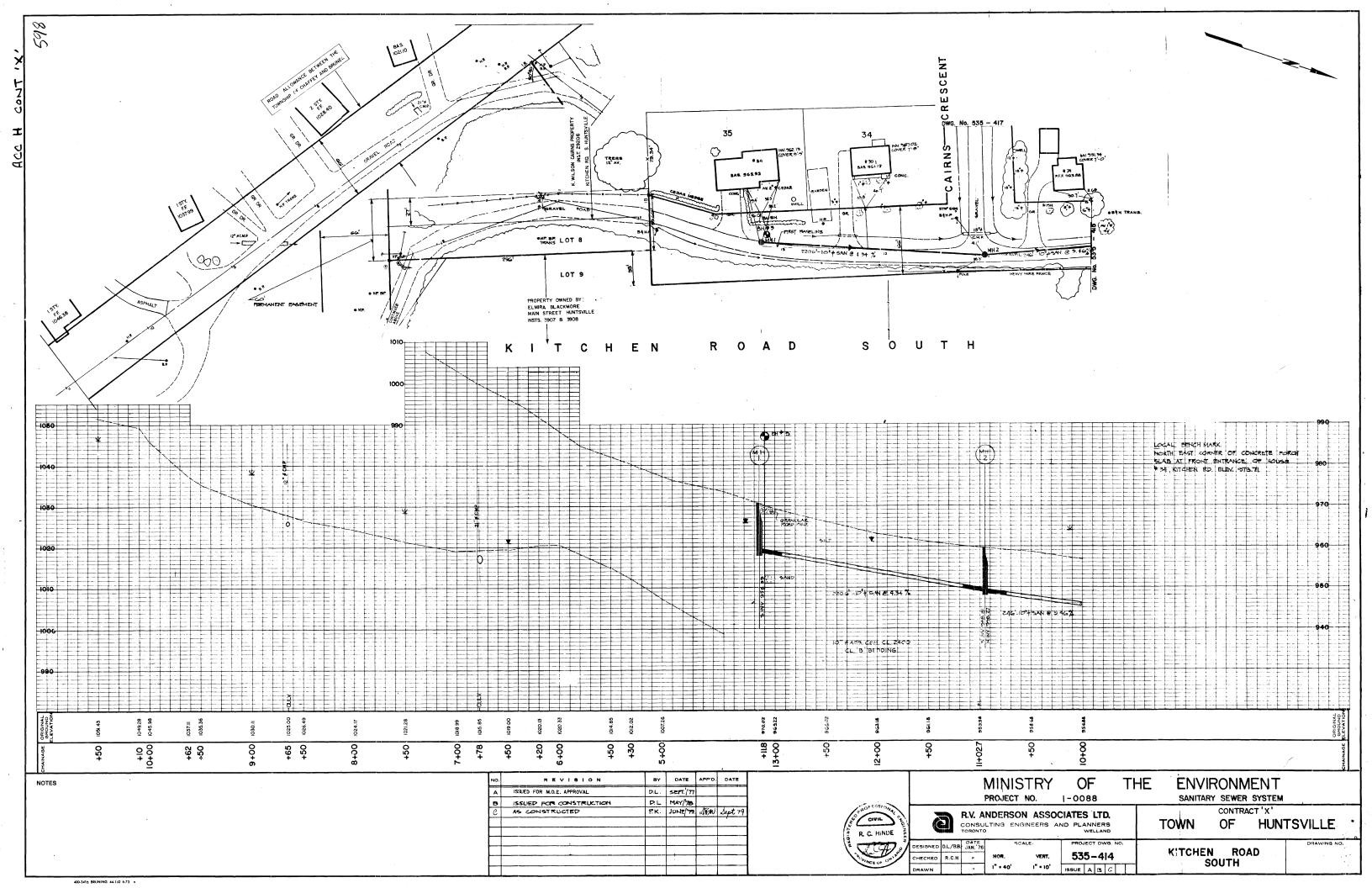
35 - 418 A TRUNK EASEMENT 35 - 433 DUFFERIN STREET (EXTENSION No. 1) WEST STREET (EXTENSION No. 2)

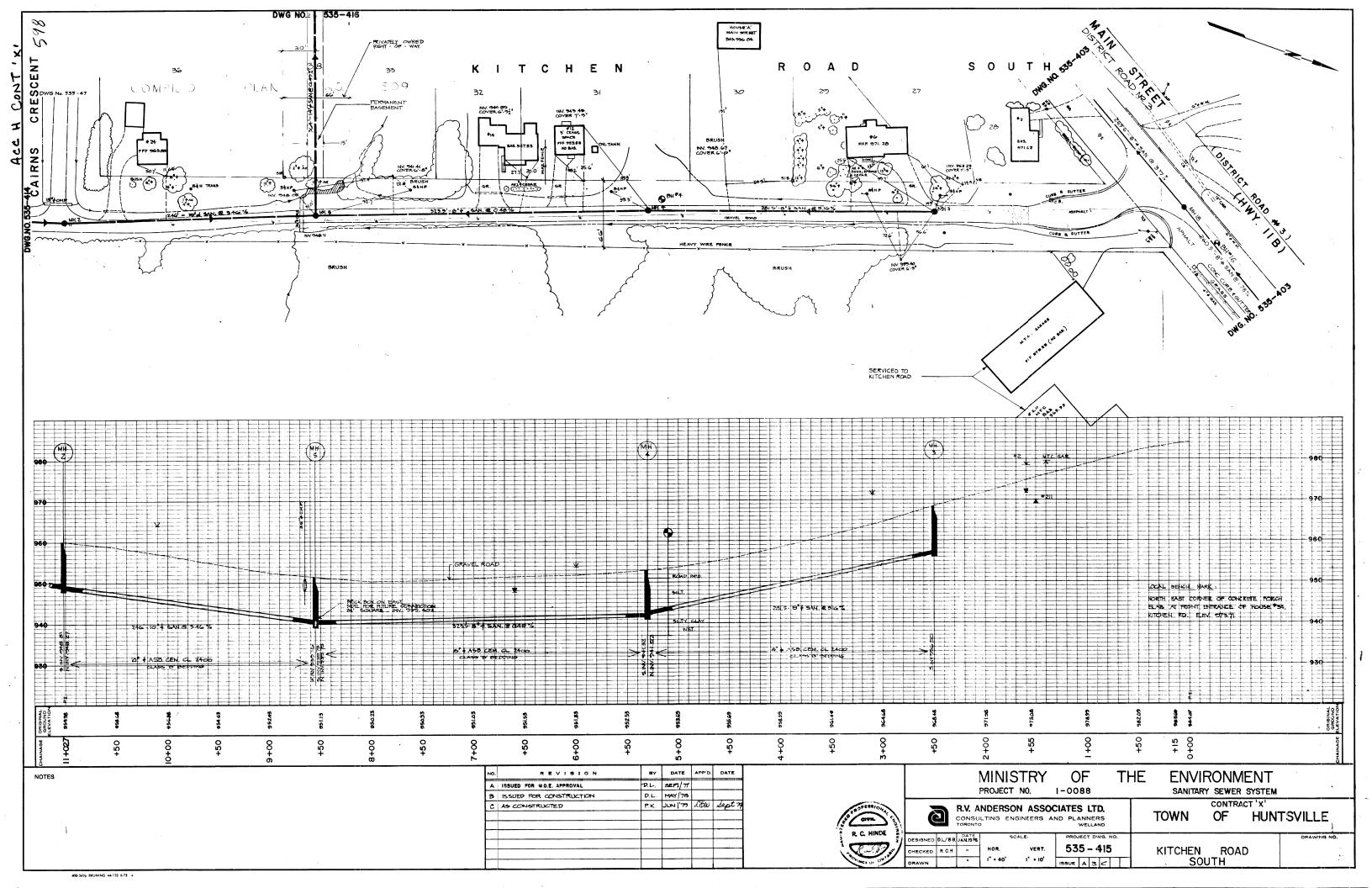
DETAIL DRAWINGS

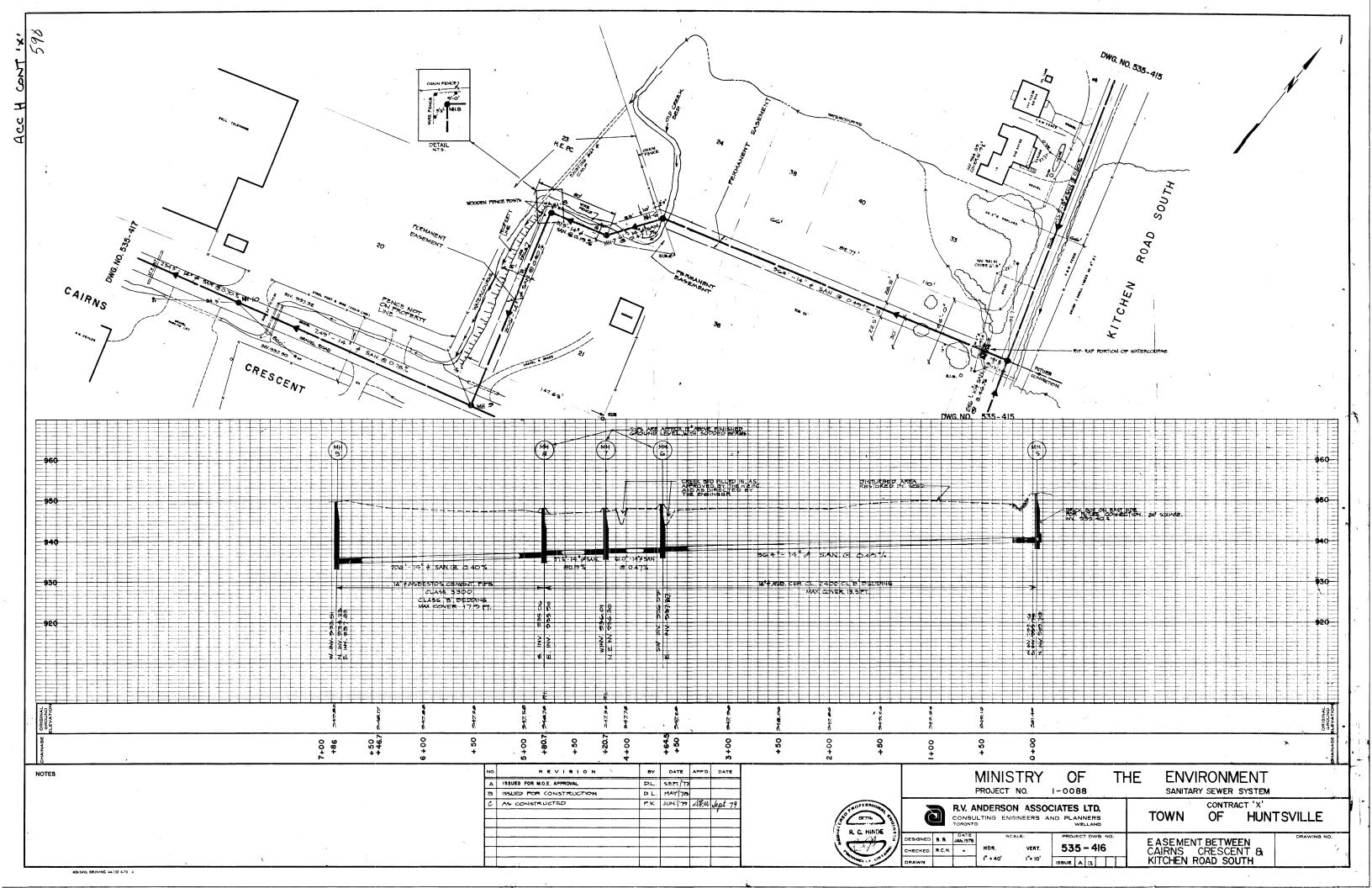
535 - 425 DETAILS 535 - 426 DETAILS

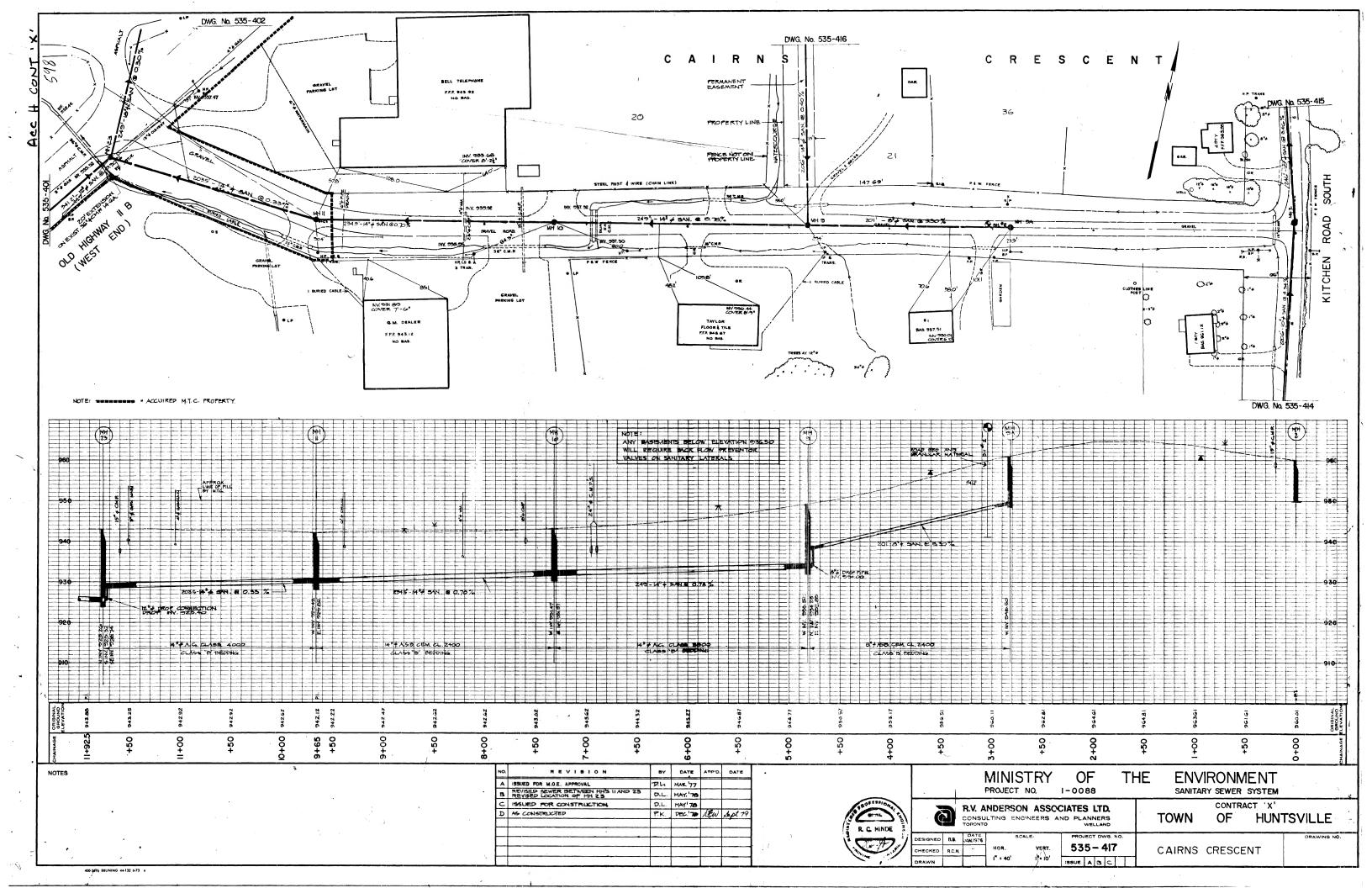

ONTARIO MINISTRY OF THE ENVIRONMENT HONOURABLE GEORGE R. Mc CAGUE MINISTER OF THE ENVIRONMENT

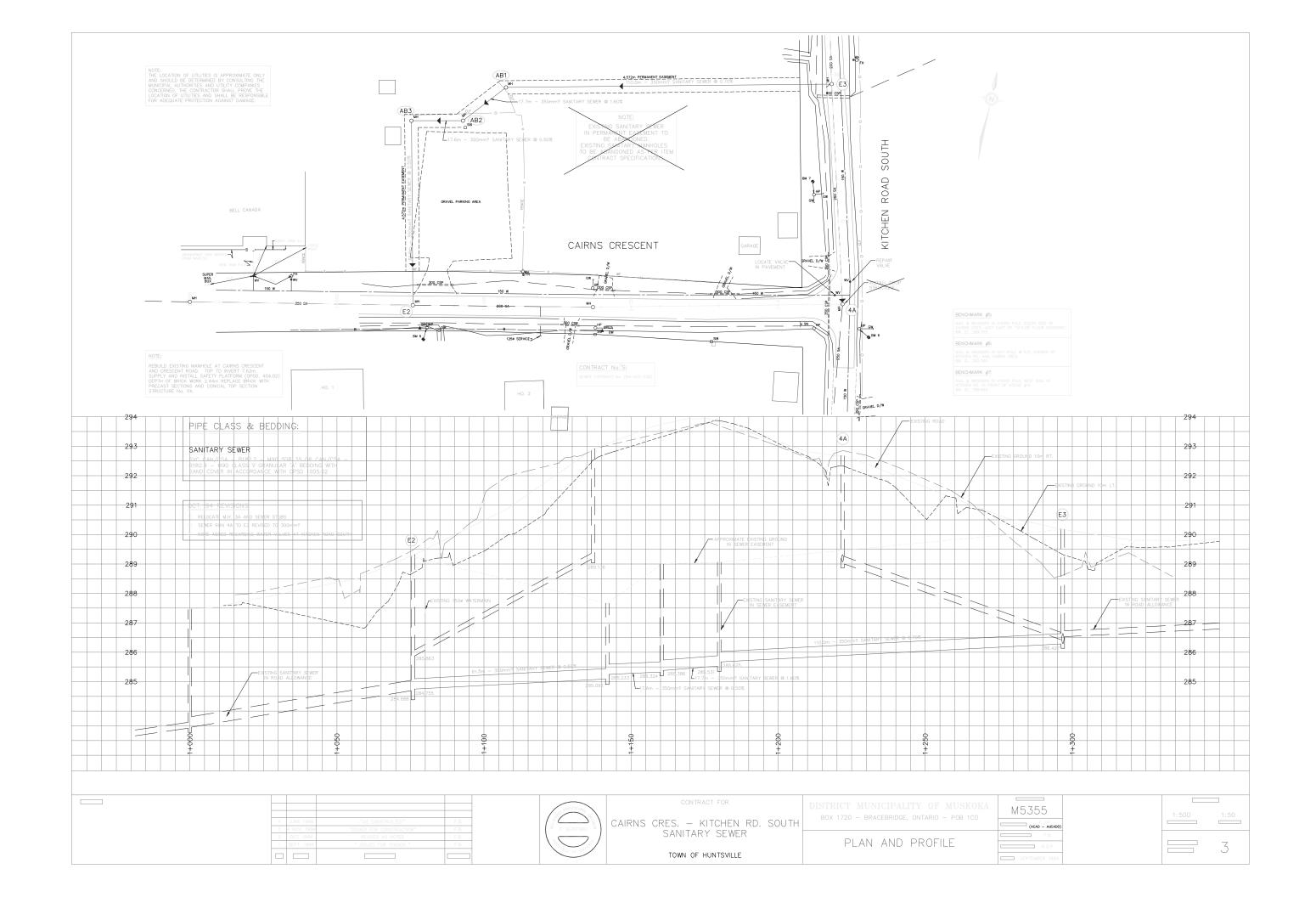
PROJECT Nº 1.0088

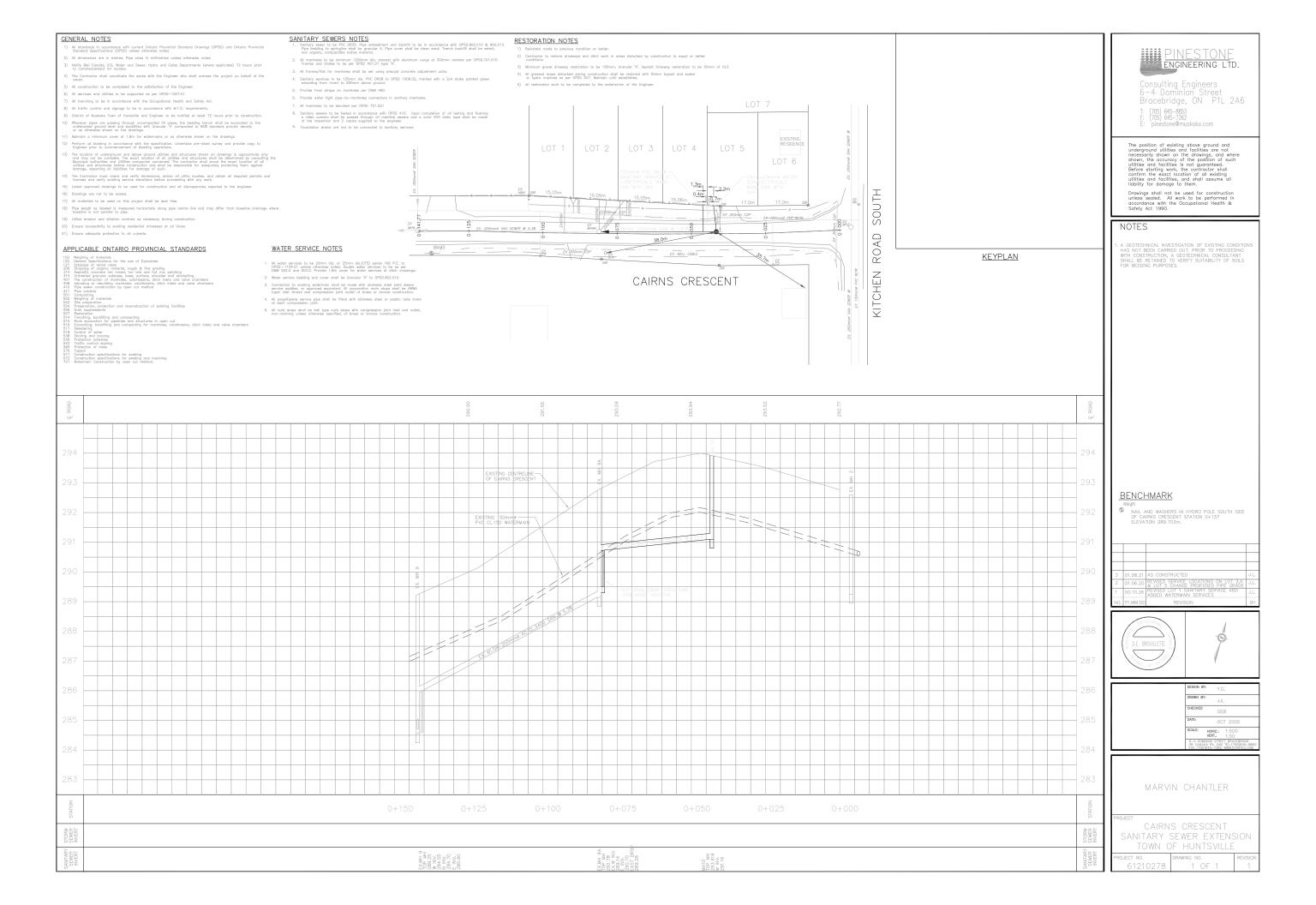

TOWN OF HUNTSVILLE

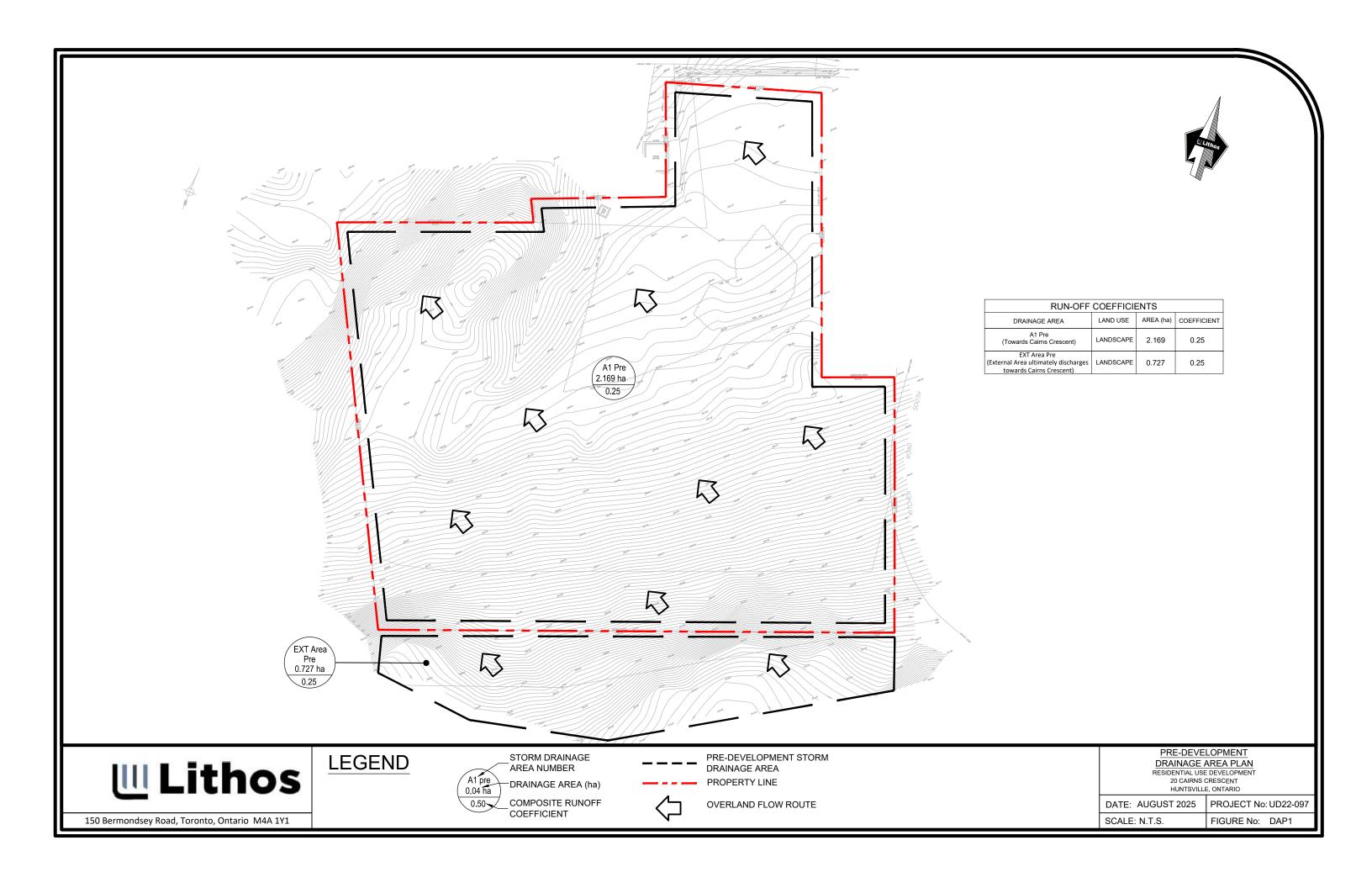

CONTRACT 'X'
SANITARY SEWER SYSTEM


1978




R.V. ANDERSON ASSOCIATES LIMITED CONSULTING ENGINEERS & PLANNERS TORONTO ONTARIO





Appendix C

Storm Analysis

Rational Method

Pre-Development Flow Calculation

20 Cairns Crescent File No. UD22-097 Town of Huntsville Date: August 2025

Prepared By: Stergios Grigoriadis P.E., M.A.Sc. Reviewed By: Anastasia Tzakopoulou P.E., M.A.Sc.

Input Parameters

С Area Number Area Тс (ha) (min.) 0.25 A1 Pre (Towards Cairns Crescent) 2.169 10 EXT Area Pre (External Area ultimately discharges towards Cairns Crescent) 0.727 0.25 10

2.896

 $I = a/(T+b)^{c}$ Formula: Constants Time of concentration Rainfall intensity

Rational Method Calculation for the Town of Huntsville

Event 2-Year

a = 789.50 b = 7.83

0.83 c =

Area Number	Α	С	AC	Tc	ı	Q	Q
	(ha)			(min.)	(mm/h)	(m³/s)	(L/s)
A1 Pre (Towards Cairns Crescent)	2.169	0.25	0.54	10	73.3	0.110	110.4
EXT Area Pre (External Area ultimately discharges towards Cairns Crescent)	0.727	0.25	0.18	10	73.3	0.037	37.0
						Total =	147.4

Event 5-Year

a = b = 950.00

6.75 0.82 c =

Area Number AC (mm/h) (m³/s) (L/s) (ha) (min.) A1 Pre (Towards Cairns Crescent) 0.54 94.2 0.142 0.25 141.9 2.169 EXT Area Pre (External Area ultimately discharges towards Cairns Crescent) 0.727 0.25 94.2 47.5

Event 10-Year

1221.00 7.38 a = b =

c = 0.84

Area Number	Α	С	AC	Tc	_	O	Q
	(ha)			(min.)	(mm/h)	(m³/s)	(L/s)
A1 Pre (Towards Cairns Crescent)	2.169	0.25	0.54	10	110.0	0.166	165.7
EXT Area Pre (External Area ultimately discharges towards Cairns Crescent)	0.727	0.25	0.18	10	110.0	0.055	55.5
						Total =	221.2

Event 25-Year

1452.00 a = b = 7.3

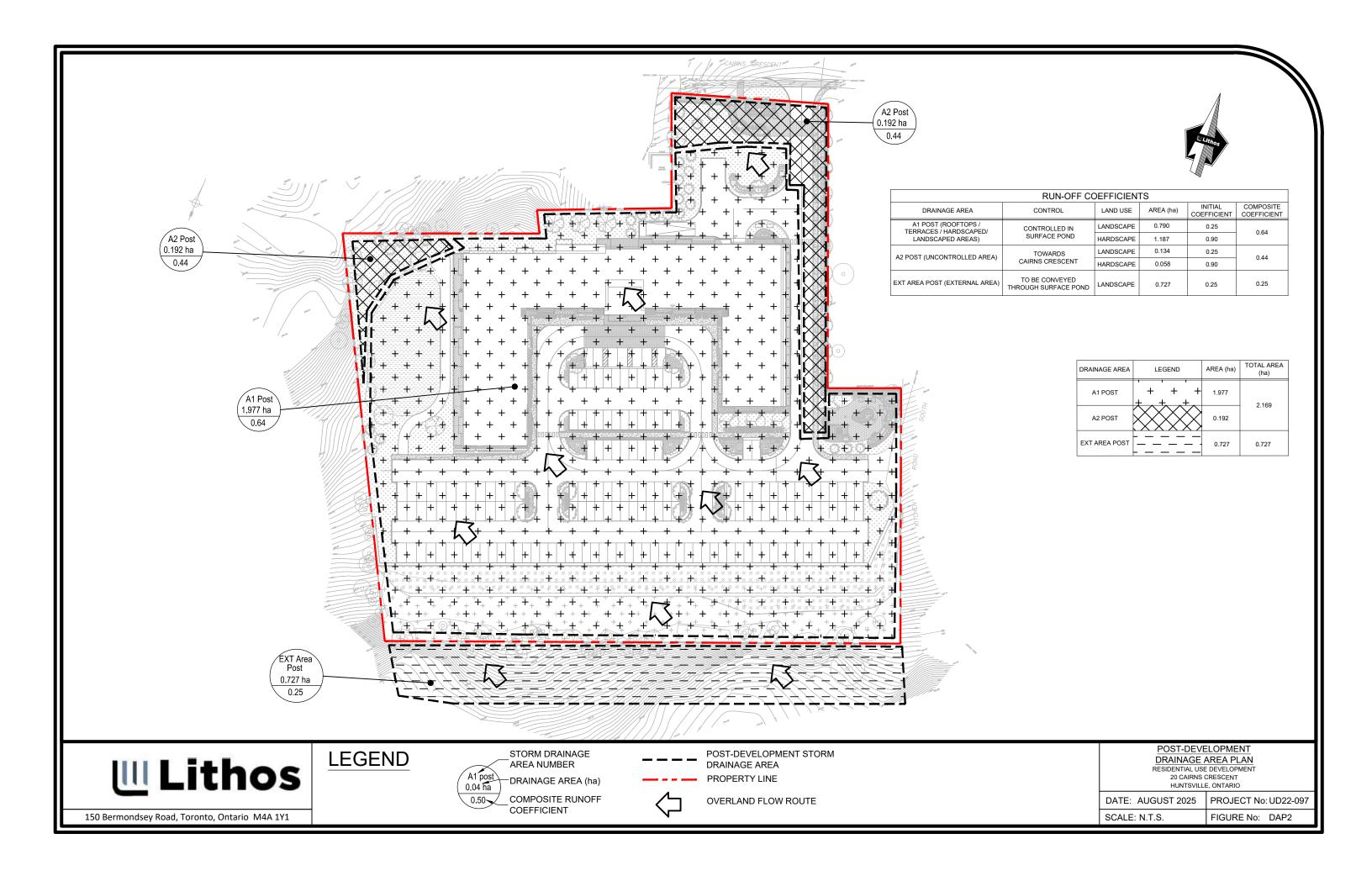
0.85 c =

Area Number	A	C	AC	I C	l I	Q	Q
	(ha)			(min.)	(mm/h)	(m³/s)	(L/s)
A1 Pre (Towards Cairns Crescent)	2.169	0.25	0.54	10	129.5	0.195	195.0
EXT Area Pre (External Area ultimately discharges towards Cairns Crescent)	0.727	0.25	0.18	10	129.5	0.065	65.3
						Total =	260.3

Event 50-Year

1466.00 a = b = 6.55

c = 0.83


Area Number	Α	С	AC	TC		Q	Q
	(ha)			(min.)	(mm/h)	(m³/s)	(L/s)
A1 Pre (Towards Cairns Crescent)	2.169	0.25	0.54	10	141.9	0.214	213.8
EXT Area Pre (External Area ultimately discharges towards Cairns Crescent)	0.727	0.25	0.18	10	141.9	0.072	71.6
						Total =	285.4

Event 100-Year

1499.00 a = b = 5.81

0.83

Area Number	A	С	AC	TC		Q	Q
	(ha)			(min.)	(mm/h)	(m ³ /s)	(L/s)
A1 Pre (Towards Cairns Crescent)	2.169	0.25	0.54	10	153.7	0.232	231.5
EXT Area Pre (External Area ultimately discharges towards Cairns Crescent)	0.727	0.25	0.18	10	153.7	0.078	77.6
						Total =	309.1

Modified Rational Method - Two Year Storm Site Flow and Storage Summary

Site Flow and Storage Summary 20 Cairns Crescent File No. UD22-097 Date: August 2025

	Anastasia Tzakopoulou P.E., M.A.Sc.												
		Drainage Area A1 P	Post		Drainage Area A2 P	Post		EXT Area Post			Total Site		
		Rooftop / Terraces / Hardso			Uncontrolled Area - Toward		escent	External Area - To be conv	eved through	n detention	Total Oito		
		Controlled in detention pone	•	Ticas -	Oncontrolled Area - Toward	us Cairris Civ	CSCCIII	pond	cyca imougi	racterition			
		Controlled in determion pens	u					pond					
		A === (A1) =	4.077 ha		A === (A 2) =	0.400	h-a	A == = (EVT) =	0.707	h			
		Area (A1) = "C" =	1.977 ha		Area (A2) = "C" =		ha	Area (EXT) = "C" =	0.727	ha	2-yr Pre-Development Site Release Rate =	147.4	L/s
		AC1 =	0.64 1.266		AC2 =	0.44 0.085		ACEXT =	0.25 0.182				
		Tc =	10.0 min		Tc =	10.0	min	Tc =	10.0	min			
		Time Increment =	5.0 min		Time Increment =	5.0	min	Time Increment =	5.0	min	Maximum Controlled Site Release Rate =	93.0	L/s
		Max. Release Rate =	257.8 L/s		Max. Release Rate =		L/s	Max. Release Rate =	37.0	L/s	Maximum Controlled One Release Rate =	00.0	2/3
		Wax. Nelease Nate =	237.0 L/5		Max. Nelease Nate =	17.4	L/S	Wax. Nelease Nate =	37.0	L/S		40= 4	m^3
											Maximum Storage Required =	105.4	m
	0 V Di 04	4											
	2 Year Design Storm	 					ı	 		1	Detention Daniel		
a=	789.50	Tributary Area (A1)		С	Tributary Area (A2)	ha	С	Tributary Area (EXT)	ha	С	<u>Detention Pond</u>		
b=	7.83	Landscape Area (A1)		0.25	Landscape Area (A2)	0.134	0.25	Landscape Area (EXT)	0.727	0.25	Area =	832.95	m ²
c=	0.83	Hardscape Area (A1)		0.90	Hardscape Area (A2)	0.058	0.90	Hardscape Area (EXT)	0.000	0.90			
I=	$I = a/(T+b)^{c}$	Total	1.977	0.64	Total	0.192	0.44	Total	0.727	0.25	Storage Capacity =	664.21	m^3
(1)	(2)	(3)	(4)		(5)		6)	(7)		(8)	(9)	(10)	(11)
	Rainfall	Storm	Runoff		Storm		noff	Storm		ınoff	Total	Released	Storage
Time		Runoff	Volume		Runoff	Vol	ume	Runoff	Vol	lume			
'''''	Intensity	(A1 Post)	(A1 Post)		(A2 Post)	(A2	Post)	(EXT Post)	/EYT	Post)	Runoff towards detention pond	Volume	Volume
		(Al Post)	(AT POSI)		(A2 POSI)	(AZ	rusi)	(EXT POSI)	(EXI	rusi)			
(min)	(mm/hr)	(m³/s)	(m ³)		(m³/s)	(r	m³)	(m³/s)	(1	m³)	(m³)	(m ³)	(m³)
10.0	73.3	0.258	154.66		0.017).44	0.037		2.19	154.66	55.83	98.83
15.0	59.8	0.210	189.19		0.014		2.77	0.030	27.15		189.19	83.74	105.45
20.0	50.8	0.179	214.23		0.012		1.46	0.026		0.74	214.23	111.65	102.57
25.0	44.3	0.156	233.66		0.011		5.77	0.022		3.53	233.66	139.56	94.09
30.0	39.4	0.139	249.44		0.009	16	6.83	0.020	35	5.79	249.44	167.48	81.97
35.0	35.6	0.125	262.69		0.008	17	7.73	0.018	37	7.70	262.69	195.39	67.30
40.0	32.5	0.114	274.08		0.008		3.49	0.016		9.33	274.08	223.30	50.77
45.0	29.9	0.105	284.05		0.007		9.17	0.015		0.76	284.05	251.22	32.84
50.0	27.8	0.098	292.93		0.007		9.77	0.014		2.03	292.93	279.13	13.80
55.0	25.9	0.091	300.91		0.006).31	0.013	43.18		300.91	307.04	0.00
60.0	24.3	0.086	308.17		0.006		0.80	0.012		4.22	308.17	334.95	0.00
65.0	23.0	0.081	314.83		0.005		1.24	0.012		5.18	314.83	362.87	0.00
70.0	21.7	0.076	320.97		0.005		1.66	0.011		3.06	320.97	390.78	0.00
75.0	20.6	0.073	326.68		0.005		2.04	0.010		6.88 7.64	326.68	418.69	0.00
80.0	19.7	0.069	332.01		0.005		2.40 2.74	0.010		7.64 3.36	332.01	446.61	0.00
85.0 90.0	18.8 18.0	0.066 0.063	337.01 341.72		0.004 0.004		2.74 3.06	0.009 0.009		3.36 9.04	337.01 341.72	474.52 502.43	0.00 0.00
95.0	17.3	0.063	346.17		0.004		3.36	0.009		9.0 4 9.68	341.72	530.34	0.00
100.0	16.6	0.058	350.39		0.004		3.64	0.009		0.28	350.39	558.26	0.00
105.0	16.0	0.056	354.41		0.004		3.92	0.008		0.86	354.41	586.17	0.00
110.0	15.4	0.054	358.24		0.004		l.17	0.008		1.41	358.24	614.08	0.00
115.0	14.9	0.052	361.90		0.004		1.42	0.008		1.93	361.90	642.00	0.00
120.0	14.4	0.051	365.41		0.003	24	1.66	0.007		2.44	365.41	669.91	0.00
125.0	14.0	0.049	368.77		0.003		1.88	0.007		2.92	368.77	697.82	0.00
130.0	13.6	0.048	372.01		0.003	25	5.10	0.007	53	3.38	372.01	725.73	0.00
135.0	13.2	0.046	375.12		0.003	25	5.31	0.007	53	3.83	375.12	753.65	0.00
140.0	12.8	0.045	378.13		0.003	25	5.52	0.006	54	4.26	378.13	781.56	0.00
145.0	12.5	0.044	381.03		0.003		5.71	0.006		4.68	381.03	809.47	0.00
150.0	12.1	0.043	383.84		0.003		5.90	0.006		5.08	383.84	837.39	0.00
155.0	11.8	0.042	386.56		0.003		3.09	0.006		5.47	386.56	865.30	0.00
160.0	11.5	0.041	389.20		0.003		5.26	0.006		5.85	389.20	893.21	0.00
165.0	11.3	0.040	391.75		0.003		6.44	0.006	56	6.22 2.57	391.75	921.13	0.00
170.0	11.0 10.7	0.039	394.24		0.003		6.60 8.77	0.006		6.57 8.02	394.24 306.66	949.04	0.00
175.0 180.0	10.7 10.5	0.038 0.037	396.66 399.01		0.003 0.002		5.77 5.93	0.005 0.005	50	6.92 7.26	396.66 399.01	976.95 1004.86	0.00 0.00
100.0	10.5	0.037	399.01		0.002	26	າ.ອວ	0.005	51	1.20	აყყ.U I	1004.80	0.00

Modified Rational Method - Five Year Storm

Site Flow and Storage Summary 20 Cairns Crescent File No. UD22-097 Date: August 2025

		Drainage Area A1 P Rooftop / Terraces / Hardsc Controlled in detention pond	ape / Landscape Areas -	Drainage Area A2 P Uncontrolled Area - Toward		rescent	EXT Area Post External Area - To be conveyed through detention pond			Total Site		
		Area (A1) = "C" = AC1 =	1.977 ha 0.64 1.266	Area (A2) = "C" = AC2 =	0.192 0.44 0.085	ha	Area (EXT) =	0.727 0.25 0.182	ha	5-yr Pre-Development Site Release Rate =	189.4	L/s
		Tc = Time Increment = Max. Release Rate =	10.0 min 5.0 min 331.2 L/s	Tc = Time Increment = Max. Release Rate =	10.0 5.0 22.3	min min L/s	Tc = Time Increment = Max. Release Rate =	10.0 5.0	min min L/s	Maximum Controlled Site Release Rate =	119.6	L/s
										Maximum Storage Required =	133.0	m ³
5 Ye	ear Design Storm											
a=	950.00	Tributary Area (A1)	ha c	Tributary Area (A2)	ha	С	Tributary Area (EXT)	ha	С	Detention Pond		
b=	6.75	Landscape Area (A1)	0.790 0.25	Landscape Area (A2)	0.134	0.25	Landscape Area (EXT)	0.727	0.25	Area =	832.95	m^2
c=	0.82	Hardscape Area (A1)	1.187 0.90	Hardscape Area (A2)	0.058	0.90	Hardscape Area (EXT)	0.000	0.90			_
 =	$I = a/(T+b)^{c}$	Total	1.977 0.64	Total	0.192	0.44	Total	0.727	0.25	Storage Capacity =	664.21	m^3
(1)	(2)	(3)	(4)	(5)		(6)	(7)		(8)	(9)	(10)	(11)
(.,	Rainfall	Storm	Runoff	Storm		unoff	Storm		inoff	Total	Released	Storage
		Runoff	Volume	Runoff	Vo	lume	Runoff		lume			
Time	Intensity	(A1 Post)	(A1 Post)	(A2 Post)	(A2	Post)	(EXT Post)	(EXT	Post)	Runoff towards detention pond	Volume	Volume
(min)	(mm/hr)	(m³/s)	(m ³)	(m³/s)	(m³)	(m³/s)	(1	m³)	(m³)	(m³)	(m³)
10.0	94.2	0.331	198.72	0.022		3.41	0.048		3.52	198.72	71.73	126.99
15.0	76.0	0.267	240.61	0.018	10	6.24	0.038		1.53	240.61	107.60	133.01
20.0	64.2	0.226	270.75	0.015	18	8.27	0.032	38	3.85	270.75	143.46	127.28
25.0	55.8	0.196	294.07	0.013	19	9.84	0.028	42	2.20	294.07	179.33	114.74
30.0	49.5	0.174	313.00	0.012		1.12	0.025	44	1.92	313.00	215.20	97.81
35.0	44.5	0.157	328.90	0.011	2:	2.19	0.022	47	7.20	328.90	251.06	77.84
40.0	40.6	0.143	342.59	0.010		3.12	0.020	49	9.16	342.59	286.93	55.66
45.0	37.4	0.131	354.60	0.009	2	3.93	0.019		0.89	354.60	322.79	31.81
50.0	34.6	0.122	365.30	0.008		4.65	0.017		2.42	365.30	358.66	6.64
55.0	32.3	0.114	374.95	0.008		5.30	0.016	53	3.81	374.95	394.53	0.00
60.0	30.3	0.107	383.74	0.007	2	5.90	0.015	55	5.07	383.74	430.39	0.00
65.0	28.6	0.100	391.81	0.007	20	6.44	0.014	56	5.22	391.81	466.26	0.00
70.0	27.0	0.095	399.27	0.006		6.94	0.014		7.30	399.27	502.13	0.00
75.0	25.7	0.090	406.22	0.006	2	7.41	0.013		3.29	406.22	537.99	0.00
80.0	24.5	0.086	412.71	0.006		7.85	0.012		9.22	412.71	573.86	0.00
85.0	23.4	0.082	418.81	0.006		8.26	0.012		0.10	418.81	609.72	0.00
90.0	22.4	0.079	424.57	0.005		8.65	0.011		0.93	424.57	645.59	0.00
95.0	21.5	0.075	430.01	0.005		9.02	0.011		1.71	430.01	681.46	0.00
100.0	20.6	0.073	435.19	0.005		9.37	0.010		2.45	435.19	717.32	0.00
105.0	19.9	0.070	440.11	0.005		9.70	0.010		3.16	440.11	753.19	0.00
110.0	19.2	0.067	444.82	0.005		0.02	0.010		3.83	444.82	789.05	0.00
115.0	18.5	0.065	449.31	0.004		0.32	0.009		1.48	449.31	824.92	0.00
120.0	17.9	0.063	453.63	0.004		0.61	0.009		5.10	453.63	860.79	0.00
125.0	17.4	0.061	457.77	0.004		0.89	0.009	6	5.69	457.77	896.65	0.00
130.0	16.8	0.059	461.76	0.004	3	1.16	0.008	66	5.26	461.76	932.52	0.00
135.0	16.3	0.057	465.61	0.004	3	1.42	0.008	66	5.81	465.61	968.38	0.00
140.0	15.9	0.056	469.32	0.004	3	1.67	0.008	6	7.35	469.32	1004.25	0.00
145.0	15.5	0.054	472.91 476.30	0.004	3	1.91	0.008	6	7.86	472.91	1040.12	0.00
150.0	15.1	0.053	476.39 470.75	0.004	37	2.15	0.008	68	3.36	476.39 470.75	1075.98	0.00
155.0	14.7	0.052	479.75	0.003	37	2.37	0.007		3.84	479.75	1111.85	0.00
160.0	14.3	0.050	483.02	0.003	3	2.59	0.007	69	9.31	483.02	1147.71	0.00
165.0 170.0	14.0 13.6	0.049	486.19 489.27	0.003 0.003	37	2.81 3.02	0.007 0.007	69	9.77).21	486.19 489.27	1183.58	0.00 0.00
	13.0	0.048	409.27	ı 0.003	3.	3.UZ	U.UU/	/(J. Z I	469.27	1219.45	1 0.00
175.0	13.3	0.047	492.27	0.003	2	3.22	0.007	7/	0.64	492.27	1255.31	0.00

Modified Rational Method - Ten Year Storm Site Flow and Storage Summary

Site Flow and Storage Summary 20 Cairns Crescent File No. UD22-097 Date: August 2025

Drainage Area A1 Post	Drainage Area	A2 Post	EXT Area Post		Total Site		
Rooftop / Terraces / Hardscape / Lands	pe Areas - Uncontrolled Area - `	owards Cairns Crescent	External Area - To be con	veyed through detention	Total Oile		
Controlled in detention pond			pond	, 0			
"C" = 0.64		C" = 0.44	Area (EXT) = "C" =	0.25	10-yr Pre-Development Site Release Rate =	221.2	L/s
AC1 = 1.266 Tc = 10.0	nin	2 = 0.085 c = 10.0 min	ACEXT = Tc =	10.0 min	Mariana Carta Had Oita Balana Batan	400.0	1./-
Time Increment = 5.0 Max. Release Rate = 386.7	nin Time Increme /s Max. Release Ra		Time Increment = Max. Release Rate =		Maximum Controlled Site Release Rate =	139.6	L/s
					Maximum Storage Required =	155.6	m ³
10 Year Design Storm					A Batantian Band		
a= 1221.00 Tributary Area (A1) ha	C Tributary Area		Tributary Area (EXT)	ha C	<u>Detention Pond</u>		2
b= 7.38 Landscape Area (A1) 0.790	0.25 Landscape Area	'I I		0.727 0.25	Area =	832.95	m ²
c= 0.84 Hardscape Area (A1) 1.187	0.90 Hardscape Area	' I		0.000 0.90		204.04	m^3
$I = I = a/(T+b)^{c} Total 1.977$		otal 0.192 0.4	44 Total	0.727 0.25	Storage Capacity =	664.21	
(1) (2) (3)		(6)	(7)	(8)	(9)	(10)	(11)
Rainfall Storm Ru		Runoff	Storm	Runoff	Total	Released	Storage
Time Runoff Vol	ne Runoff	Volume	Runoff	Volume	Donaff Associated detection would	Walana a	Walanaa
Intensity (A1 Post) (A1		(A2 Post)	(EXT Post)	(EXT Post)	Runoff towards detention pond	Volume	Volume
(min) (mm/hr) (m³/s) (r		(m ³)	(m³/s)	(m ³)	(m³)	(m ³)	(m³)
10.0 110.0 0.387 23		15.66	0.055	33.30	232.04	83.76	148.28
15.0 88.9 0.312 28		18.98	0.045	40.36	281.25	125.64	155.61
20.0 75.0 0.264 31		21.35	0.038	45.40	316.38	167.52	148.86
25.0 65.1 0.229 34 20.0 57.7		23.17	0.033	49.27	343.33	209.40	133.93
30.0 57.7 0.203 36 35.0 51.9 0.182 38		24.63 25.85	0.029 0.026	52.38 54.97	365.02 383.09	251.28 293.16	113.74 89.93
40.0 47.2 0.166 39		26.89	0.024	57.19	398.53	335.04	63.49
45.0 43.4 0.153 41		27.80	0.022	59.12	411.99	376.92	35.07
50.0 40.2 0.141 42		28.61	0.020	60.83	423.90	418.80	5.10
55.0 37.5 0.132 43		29.33	0.019	62.36	434.58	460.68	0.00
60.0 35.1 0.123 44		29.98	0.018	63.75	444.25	502.56	0.00
65.0 33.0 0.116 45		30.57	0.017	65.02	453.09	544.44	0.00
70.0 31.2 0.110 46		31.12	0.016	66.19	461.23	586.32	0.00
75.0 29.6 0.104 46		31.63	0.015	67.27	468.76	628.20	0.00
80.0 28.2 0.099 479		32.11	0.014	68.27	475.78	670.08	0.00
85.0 26.9 0.095 48.		32.55	0.014	69.22	482.35	711.96	0.00
90.0 25.7 0.090 48		32.97	0.013	70.10	488.53	753.84	0.00
95.0 24.7 0.087 49 100.0 23.7 0.083 49		33.36 33.73	0.012 0.012	70.94 71.73	494.36 499.87	795.72 837.60	0.00 0.00
100.0 23.7 0.083 49		34.09	0.012	71.73	505.11	879.48	0.00
110.0 22.0 0.000 50.000 51.000	.	34.42	0.012	73.20	510.10	921.36	0.00
115.0 21.2 0.075 51.		34.74	0.011	73.88	514.86	963.24	0.00
120.0 20.5 0.072 519		35.05	0.010	74.53	519.41	1005.12	0.00
125.0 19.9 0.070 52	77 0.005	35.34	0.010	75.16	523.77	1047.00	0.00
130.0 19.3 0.068 52	0.005	35.63	0.010	75.76	527.96	1088.88	0.00
135.0 18.7 0.066 53	0.004	35.90	0.009	76.34	531.99	1130.76	0.00
140.0 18.1 0.064 53	0.004	36.16	0.009	76.90	535.88	1172.64	0.00
145.0 17.6 0.062 53		36.41	0.009	77.44	539.62	1214.52	0.00
150.0 17.2 0.060 54 455.0 0.050		36.66	0.009	77.95	543.24	1256.40	0.00
155.0 16.7 0.059 54 16.0 16.3 0.057	0.004	36.89	0.008	78.46	546.74 550.13	1298.28	0.00
160.0 16.3 0.057 55 165.0 15.9 0.056 55		37.12 37.35	0.008 0.008	78.94 79.42	550.13 553.42	1340.16	0.00
165.0 15.9 0.056 55 170.0 15.5 0.055 55	0.004 0.004	37.56	0.008	79.42	556.61	1382.04 1423.92	0.00 0.00
170.0 15.5 0.053 550 175.0 15.2 0.053 550	0.004	37.77	0.008	80.32	559.71	1465.80	0.00
180.0 14.8 0.052 56		37.97	0.007	80.75	562.73	1507.68	0.00

Modified Rational Method - Twenty-Five Storm Site Flow and Storage Summary 20 Cairns Crescent

File No. UD22-097 Date: August 2025

Prepared By: Stergios Grigoriadis P.E., M.A.Sc.

Reviewed By: Ana	astasia Tzakopoulou P.E., M.A.Sc.											
		Drainage Area A1 F	Post	Drainage Area A2 P	ost		EXT Area Post			Total Site		
		Rooftop / Terraces / Hards		Uncontrolled Area - Toward		rescent	External Area - To be conv	eved through	ah detention			
		Controlled in detention pon		oncommonou / nou i roman		10000111	pond	oyou unoug	gir dotoridori			
		Controlled in determion port	···				Poriu					
		Area (A1) =	1.977 ha	Area (A2) =	0.192	ha	Area (EXT) =	0.727	ha			
		"C" =	0.64	"C" =	0.192	на	"C" =	0.727	Па	25-yr Pre-Development Site Release Rate =	260.3	L/s
		AC1 =	1.266	AC2 =	0.44		ACEXT =	0.182				
		Tc=	10.0 min	Tc =	10.0	min	Tc =	10.0	min			
		Time Increment =	5.0 min	Time Increment =	5.0	min	Time Increment =	5.0	min	Maximum Controlled Site Release Rate =	164.3	L/s
										Maximum Controlled Oile Release Rate -	104.5	L/3
		Max. Release Rate =	455.2 L/s	Max. Release Rate =	30.7	L/s	Max. Release Rate =	65.3	L/s			3
										Maximum Storage Required =	182.4	m^3
	IV B i - Ot	4										
	Year Design Storm									Botontion Bond		
a=	1452.00	Tributary Area (A1)	ha C	Tributary Area (A2)	ha	С	Tributary Area (EXT)	ha	С	<u>Detention Pond</u>		0
b=	7.30	Landscape Area (A1)	0.790 0.25	Landscape Area (A2)	0.134	0.25	Landscape Area (EXT)	0.727	0.25	Area =	832.95	m^2
c=	0.85	Hardscape Area (A1)	1.187 0.90	Hardscape Area (A2)	0.058	0.90	Hardscape Area (EXT)	0.000	0.90			_
l=	I = a/(T+b) ^c	Total	1.977 0.64	Total	0.192	0.44	Total	0.727	0.25	Storage Capacity =	664.21	m^3
									(2)			
(1)	(2)	(3)	(4)	(5)		(6)	(7)		(8)	(9)	(10)	(11)
	Rainfall	Storm	Runoff	Storm		unoff	Storm		unoff	Total	Released	Storage
Time		Runoff	Volume	Runoff	Vo	lume	Runoff	V	olume			
	Intensity	(A1 Post)	(A1 Post)	(A2 Post)	(A2	Post)	(EXT Post)	(EX	T Post)	Runoff towards detention pond	Volume	Volume
		1 ' '						•	,		_	_
(min)	(mm/hr)	(m³/s)	(m³)	(m³/s)		(m³)	(m³/s)		(m³)	(m³)	(m ³)	(m ³)
10.0	129.5	0.455	273.10	0.031	18	8.43	0.065		39.19	273.10	98.58	174.52
15.0	104.4	0.367	330.30	0.025		2.29	0.053		17.40	330.30	147.87	182.43
20.0	87.9	0.309	370.97	0.021	2	5.03	0.044	5	53.23	370.97	197.16	173.82
25.0	76.2	0.268	402.08	0.018		7.13	0.038		57.70	402.08	246.45	155.64
30.0	67.5	0.237	427.06	0.016	2	8.82	0.034	6	31.28	427.06	295.74	131.33
35.0	60.6	0.213	447.83	0.014	30	0.22	0.031	6	34.26	447.83	345.03	102.80
40.0	55.2	0.194	465.54	0.013	3	1.41	0.028	6	6.80	465.54	394.32	71.22
45.0	50.7	0.178	480.95	0.012	3:	2.46	0.026	6	89.02	480.95	443.61	37.35
50.0	46.9	0.165	494.58	0.011	3:	3.37	0.024	7	0.97	494.58	492.90	1.68
55.0	43.7	0.154	506.78	0.010	34	4.20	0.022		72.72	506.78	542.19	0.00
60.0	40.9	0.144	517.82	0.010	34	4.94	0.021	7	4.31	517.82	591.48	0.00
65.0	38.5	0.135	527.89	0.009		5.62	0.019		75.75	527.89	640.77	0.00
70.0	36.4	0.128	537.16	0.009	3(6.25	0.018		77.08	537.16	690.06	0.00
75.0	34.5	0.121	545.74	0.008		6.83	0.017		78.31	545.74	739.35	0.00
80.0	32.8	0.115	553.72	0.008	3	7.37	0.017		9.46	553.72	788.63	0.00
85.0	31.3	0.110	561.19	0.007	3	7.87	0.016		30.53	561.19	837.92	0.00
90.0	29.9	0.105	568.20	0.007		8.34	0.015		31.54	568.20	887.21	0.00
95.0	28.7	0.101	574.82	0.007		8.79	0.014		32.49	574.82	936.50	0.00
100.0	27.5	0.097	581.07	0.007		9.21	0.014		33.38	581.07	985.79	0.00
105.0	26.5	0.093	587.01	0.006		9.61	0.013		34.24	587.01	1035.08	0.00
110.0	25.5	0.090	592.66	0.006	31	9.99	0.013	۶	35.05	592.66	1084.37	0.00
115.0	24.7	0.087	598.05	0.006		0.36	0.012		35.82	598.05	1133.66	0.00
120.0	23.8	0.084	603.21	0.006		0.70	0.012		36.56	603.21	1182.95	0.00
125.0	23.1	0.081	608.15	0.005		1.04	0.012	۶	37.27	608.15	1232.24	0.00
130.0	22.3	0.079	612.89	0.005	4	1.36	0.011	۶	37.95	612.89	1281.53	0.00
135.0	21.7	0.076	617.44	0.005	4	1.67	0.011	۶	38.60	617.44	1330.82	0.00
140.0	21.1	0.074	621.83	0.005		1.96	0.011		39.23	621.83	1380.11	0.00
145.0	20.5	0.074	626.06	0.005	4	2.25	0.010	9	39.84	626.06	1429.40	0.00
150.0	19.9	0.072	630.15	0.005	4.	2.52	0.010	(90.43	630.15	1478.69	0.00
155.0	19.4	0.070	634.11	0.005	4.	2.79	0.010	Č	90.43 90.99	634.11	1527.98	0.00
160.0	18.9	0.066	637.93	0.003		3.05	0.010	Č	90.99 91.54	637.93	1577.27	0.00
165.0	18.4	0.065	641.64	0.004	4·	3.30	0.010	Č	92.08	641.64	1626.56	0.00
170.0	18.0	0.063	645.24	0.004		3.54	0.009		92.59	645.24	1675.85	0.00
175.0	17.6	0.062	648.74	0.004		3.78	0.009	ç	93.09	648.74	1725.14	0.00
180.0	17.2	0.060	652.14	0.004		4.01	0.009		93.58	652.14	1774.43	0.00

Modified Rational Method - Fifty Year Storm Site Flow and Storage Summary 20 Cairns Crescent

File No. UD22-097 Date: August 2025

Reviewed By: /	Anastasia Tzakopoulou P.E., M.A.Sc.	1								_		
		Drainage Area A1 P	ost	Drainage Area A2 P	ost		EXT Area Post T		Total Site			
		Rooftop / Terraces / Hardso		Uncontrolled Area - Toward		escent	External Area - To be conve	eved throu	h detention			
		Controlled in detention pond					pond	,	,			
		A :: (A 4) -	4.077	A (AO)	0.400	la a	A (EVT)	0.707	h -			
		Area (A1) =	1.977 ha	Area (A2) =		ha	Area (EXT) =	0.727	ha	50-yr Pre-Development Site Release Rate =	285.4	L/s
		"C" =	0.64	"C" =	0.44		"C" =	0.25				
		AC1 =	1.266	AC2 =	0.085		ACEXT =	0.182				
		Tc =	10.0 min	Tc =	10.0	min	Tc =	10.0	min			
		Time Increment =	5.0 min	Time Increment =	5.0	min	Time Increment =	5.0	min	Maximum Controlled Site Release Rate =	180.1	L/s
		Max. Release Rate =	499.1 L/s	Max. Release Rate =	33.7	L/s	Max. Release Rate =	71.6	L/s			
										Maximum Storage Required =	198.5	m^3
										3		
	50 Year Design Storm	1										
	<u> </u>	Tributeru Area (A4)	ha a	Tributom: Area (A2)	h-		Tributanu Anaa (EVT)	h-a		- Detention Bond		
a=	1466.00	Tributary Area (A1)	ha C	Tributary Area (A2)	ha	C	Tributary Area (EXT)	ha	C	<u>Detention Pond</u>		2
b=	6.55	Landscape Area (A1)	0.790 0.25	Landscape Area (A2)	0.134	0.25	Landscape Area (EXT)	0.727	0.25	Area =	832.95	m^2
c=	0.83	Hardscape Area (A1)	1.187 0.90	Hardscape Area (A2)	0.058	0.90	Hardscape Area (EXT)	0.000	0.90			_
l=	$I = a/(T+b)^{c}$	Total	1.977 0.64	Total	0.192	0.44	Total	0.727	0.25	Storage Capacity =	664.21	m ³
										<u> </u>		
(1)	(2)	(3)	(4)	(5)	((6)	(7)		(8)	(9)	(10)	(11)
	Rainfall	Storm	Runoff	Storm	Ru	inoff	Storm	F	unoff	Total	Released	Storage
		Runoff	Volume	Runoff		lume	Runoff		olume			
Time	Intensity									Runoff towards detention pond	Volume	Volume
	intenerty	(A1 Post)	(A1 Post)	(A2 Post)	(A2	Post)	(EXT Post)	(EX	T Post)	Ranon towards determion pond	Volunic	Volume
		3	2	3		•	3		•	,	. 3.	. 3.
(min)	(mm/hr)	(m³/s)	(m³)	(m ³ /s)		m³)	(m ³ /s)		(m³)	(m³)	(m³)	(m³)
10.0	141.9	0.499	299.44	0.034).21	0.072		12.97	299.44	108.09	191.35
15.0	113.9	0.401	360.59	0.027		1.33	0.057		51.74	360.59	162.13	198.46
20.0	95.8	0.337	404.16	0.023		7.27	0.048		58.00	404.16	216.18	187.99
25.0	83.0	0.292	437.64	0.020		9.53	0.042	(62.80	437.64	270.22	167.42
30.0	73.4	0.258	464.67	0.017	31	1.36	0.037	(66.68	464.67	324.26	140.41
35.0	66.0	0.232	487.26	0.016	32	2.88	0.033	(59.92	487.26	378.31	108.96
40.0	60.0	0.211	506.64	0.014	34	1.19	0.030	•	72.70	506.64	432.35	74.29
45.0	55.2	0.194	523.58	0.013	35	5.33	0.028	•	75.13	523.58	486.39	37.19
50.0	51.1	0.180	538.63	0.012		3.35	0.026		77.29	538.63	540.44	0.00
55.0	47.6	0.167	552.17	0.011	37	7.26	0.024	•	79.24	552.17	594.48	0.00
60.0	44.6	0.157	564.47	0.011	38	3.09	0.023		31.00	564.47	648.53	0.00
65.0	42.0	0.148	575.74	0.010	38	3.85	0.021	;	32.62	575.74	702.57	0.00
70.0	39.7	0.140	586.14	0.009	39	9.55	0.020		34.11	586.14	756.61	0.00
75.0	37.7	0.132	595.81	0.009).21	0.019		35.50	595.81	810.66	0.00
80.0	35.8	0.126	604.83	0.009).81	0.018		36.79	604.83	864.70	0.00
85.0	34.2	0.120	613.29	0.008		1.39	0.017		38.01	613.29	918.75	0.00
90.0	32.7	0.115	621.26	0.008		1.92	0.017		39.15	621.26	972.79	0.00
95.0	31.4	0.110	628.80	0.007		2.43	0.016		90.23	628.80	1026.83	0.00
100.0	30.1	0.106	635.95	0.007		2.91	0.015		91.26	635.95	1080.88	0.00
105.0	29.0	0.102	642.75	0.007		3.37	0.015		92.23	642.75	1134.92	0.00
110.0	28.0	0.098	649.24	0.007		3.81	0.014		93.16	649.24	1188.97	0.00
115.0	27.0	0.095	655.43	0.006		1.23	0.014		94.05	655.43	1243.01	0.00
120.0	26.1	0.092	661.37	0.006		1.63	0.013		94.91	661.37	1297.05	0.00
125.0	25.3	0.089	667.07	0.006		5.01	0.013		95.72	667.07	1351.10	0.00
130.0	24.5	0.086	672.56	0.006		5.38	0.012		96.51	672.56	1405.14	0.00
135.0	23.8	0.084	677.84	0.006		5.74	0.012		97.27	677.84	1459.18	0.00
140.0	23.1	0.081	682.93	0.005		3.08	0.012		98.00	682.93	1513.23	0.00
145.0	22.5	0.079	687.85	0.005		6.42	0.011		98.71	687.85	1567.27	0.00
150.0	21.9	0.077	692.61	0.005		5.74	0.011		99.39	692.61	1621.32	0.00
155.0	21.3	0.075	697.22	0.005	47	7.05	0.011		00.05	697.22	1675.36	0.00
160.0	20.8	0.073	701.69	0.005		7.35	0.010	1	00.69	701.69	1729.40	0.00
165.0	20.3	0.071	706.02	0.005	47	7.64	0.010		01.31	706.02	1783.45	0.00
170.0	19.8	0.070	710.24	0.005		7.93	0.010		01.92	710.24	1837.49	0.00
475 ^	40.0	0.060	714.33	0.005	19	20	0.040	1	02.51	714.33	1891.54	
175.0 180.0	19.3 18.9	0.068 0.067	718.32	0.003		3.20 3.47	0.010 0.010		02.51 03.08	714.33	1945.58	0.00 0.00

Modified Rational Method - Hundred Year Storm

Site Flow and Storage Summary 20 Cairns Crescent File No. UD22-097 Date: August 2025

Reviewed By: Anasta	asia Tzakopoulou P.E., M.A.Sc.												
		Drainage Area A1 P	ost	Drainage Area A2 P	Post		EXT Area Post T			Total Site			
		Rooftop / Terraces / Hardsc		Uncontrolled Area - Towar		escent	External Area - To be conve	eved through	detention				
		Controlled in detention pond			ao oao o.		pond	., ou unoug.					
		Tooms on the second of the sec	•				l some						
		Area (A1) =	1.977 ha	Area (A2) =	0.192	ho	Area (EXT) =	0.727	ho				
		Area (A1) = "C" =	1.977 ha 0.64	Area (A2) = "C" =		ha	"C" =		ha	100-yr Pre-Development Site Release Rate =	309.1	L/s	
					0.44		_	0.25					
		AC1 =	1.266	AC2 =	0.085		ACEXT =	0.182					
		Tc =	10.0 min	Tc =	10.0	min	Tc =	10.0	min		40= 4		
		Time Increment =	5.0 min	Time Increment =	5.0	min	Time Increment =	5.0	min	Maximum Controlled Site Release Rate =	195.1	L/s	
		Max. Release Rate =	540.4 L/s	Max. Release Rate =	36.5	L/s	Max. Release Rate =	77.6	L/s				
										Maximum Storage Required =	212.2	m^3	
10	0 Year Design Storm	7											
a=	1499.00	Tributary Area (A1)	ha c	Tributary Area (A2)	ha	С	Tributary Area (EXT)	ha	С	Detention Pond			
b=	5.81	Landscape Area (A1)	0.790 0.25	Landscape Area (A2)	0.134	0.25	Landscape Area (EXT)	0.727	0.25	Area =	832.95	m^2	
	0.83	⊣ ' '	1.187 0.90		0.058	0.90		0.000	0.90	Alea -	032.93	***	
C=		Hardscape Area (A1)	•	Hardscape Area (A2)			Hardscape Area (EXT)				204.04	3	
I=	$I = a/(T+b)^{c}$	Total	1.977 0.64	Total	0.192	0.44	Total	0.727	0.25	Storage Capacity =	664.21	m ³	
(4)	(0)	(0)	(4)	(5)		6)	(7)		· O \	(0)	(40)	1	(44)
(1)	(2) Rainfall	(3)	(4)	(5)		6)	(7)		(8) Inoff	(9)	(10)		(11)
	Raintali	Storm	Runoff	Storm		noff	Storm			Total	Released		Storage
Time		Runoff	Volume	Runoff	VO	ume	Runoff	Vo	ume				
	Intensity	(A1 Post)	(A1 Post)	(A2 Post)	(A2	Post)	(EXT Post)	(EXT	Post)	Runoff towards detention pond	Volume		Volume
		I ' '	(* : 554)	1 ' '	(1 ' '	•	•				
(min)	(mm/hr)	(m³/s)	(m³)	(m³/s)	(1	n³)	(m³/s)	(1	m³)	(m ³)	(m ³)		(m³)
10.0	153.7	0.540	324.26	0.036		.88	0.078		3.53	324.26	117.05		207.21
15.0	122.5	0.431	387.73	0.029		6.16	0.062	55.64		387.73	175.57		212.16
20.0	102.6	0.361	432.83	0.024	29.21		0.052	62	2.11	432.83	234.10		198.74
25.0	88.6	0.312	467.50	0.021	31.55		0.045	67.09		467.50	292.62		174.88
30.0	78.3	0.275	495.55	0.019		3.44	0.040		1.11	495.55	351.15		144.40
35.0	70.3	0.247	519.04	0.017		5.03	0.035		1.48	519.04	409.67		109.37
40.0	63.9	0.225	539.24	0.015		6.39	0.032	77	7.38	539.24	468.19		71.05
45.0	58.7	0.206	556.95	0.014		7.58	0.030	79	9.92	556.95	526.72		30.24
50.0	54.3	0.191	572.73	0.013		3.65	0.027		2.19	572.73	585.24		0.00
55.0	50.6	0.178	586.95	0.012		9.61	0.026		1.23	586.95	643.77		0.00
60.0	47.4	0.167	599.90	0.011	40).48	0.024	86	8.08	599.90	702.29		0.00
65.0	44.6	0.157	611.79	0.011		.28	0.023		7.79	611.79	760.81		0.00
70.0	42.2	0.148	622.79	0.010		2.03	0.021	89	9.37	622.79	819.34		0.00
75.0	40.0	0.141	633.02	0.009		2.72	0.020).84	633.02	877.86		0.00
80.0	38.1	0.134	642.59	0.009		3.36	0.019		2.21	642.59	936.39		0.00
85.0	36.3	0.128	651.59	0.009		3.97	0.018		3.50	651.59	994.91		0.00
90.0	34.8	0.122	660.08	0.008		1.54	0.018		1.72	660.08	1053.44		0.00
95.0	33.3	0.117	668.11	0.008		5.08	0.017		5.87	668.11	1111.96		0.00
100.0	32.0	0.113	675.74	0.008		5.60	0.016		6.97	675.74	1170.48		0.00
105.0	30.8	0.108	683.01	0.007	46	6.09	0.016	98	3.01	683.01	1229.01		0.00
110.0	29.7	0.105	689.95	0.007	46	6.56	0.015	99	9.01	689.95	1287.53		0.00
115.0	28.7	0.101	696.59	0.007		7.01	0.014	99	9.96	696.59	1346.06		0.00
120.0	27.8	0.098	702.96	0.007	47	7.44	0.014	10	0.87	702.96	1404.58		0.00
125.0	26.9	0.095	709.08	0.006	47	7.85	0.014		1.75	709.08	1463.10		0.00
130.0	26.1	0.092	714.97	0.006	48	3.25	0.013		2.60	714.97	1521.63		0.00
135.0	25.3	0.089	720.65	0.006	48	3.63	0.013		3.41	720.65	1580.15		0.00
140.0	24.6	0.086	726.14	0.006	49	9.00	0.012		4.20	726.14	1638.68		0.00
145.0	23.9	0.084	731.44	0.006	49	9.36	0.012		4.96	731.44	1697.20		0.00
150.0	23.3	0.082	736.57	0.006	49	9.70	0.012		5.70	736.57	1755.73		0.00
155.0	22.7	0.080	741.55	0.005		0.04	0.011		6.41	741.55	1814.25		0.00
160.0	22.1	0.078	746.37	0.005).37	0.011		7.10	746.37	1872.77		0.00
165.0	21.6	0.076	751.06	0.005	50).68	0.011		7.78	751.06	1931.30		0.00
170.0	21.1	0.074	755.62	0.005).99	0.011		8.43	755.62	1989.82		0.00
175.0	20.6	0.072	760.05	0.005	51	.29	0.010		9.07	760.05	2048.35		0.00
180.0	20.1	0.071	764.37	0.005	51	.58	0.010		9.69	764.37	2106.87		0.00

Water Balance Calculations

20 Cairns Crescent

File No. UD22-097

Date: August 2025

Prepared By: Stergios Grigoriadis P.E., M.A.Sc.

Reviewed By: Anastasia Tzakopoulou P.E., M.A.Sc.

Contributing Drainage Area	21693.2	m^2
Rainfall depth to be retained	5.0	mm
Total rainfall volume at 5mm	108.47	m^3

Initial Abstraction Calculations

Surface	Area (m²)	IA (mm)	Volume (m³)	
Landscape	9244.4	5.0	46.22	m^3
Roof/Terraces/Asphalt	12448.8	1.0	12.45	m^3
Total	21693.2		58.67	m^3

Water Balance Required 49.80 m³

DETENTION POND CALCULATION

Site Flow and Storage Summary 20 Cairns Crescent, Huntsville File No. UD22-097 Date: August 2025

Prepared By: Rigina Vouxinou P.E., M.A. Reviewed By: Iraklis Nikoletos P.E., M.A.Sc

olumetric Quality Control							
Vater Quality Requirements based on t	he Table 3	3.2 MOE Manual					
The proposed development will provide (level 1) protection of the total suspended solids Total calculated impervious level of approximately 60%, which requires 161.7 m3/ha for permanent pool storage, and 40m3/ha for the extendend detention area.							
Drainage Area=	1.977	ha					
Required Permanent Pool Size (Table 3.2 MOE Manual) - Quality Control=	319.68	m³					
Required Extendend Detention Size (Table 3.2 MOE Manual) - Quality Control=	79.080	m³					

Total Volumetric Quality control: 398.76 m³

	Required Volume for the detention Pond Based on the MOE Manual									
Quality Control Permanent Pool				Quality Control & Quantity Control - Extended Detention						
		Volume (m³)	Footprint of the Detention Pond (m²)			Volume (m³)	Footprint of the Detention Pond (m²)			
Dettern	Elevation 291.40		41.34		Elevation					
Bottom:		-					T			
0.05	291.45	1.14	47.10	1.80	293.20	349.89	466.60			
0.10	291.50	2.42	53.14	1.85	293.25	373.68	484.97			
0.15	291.55	3.86	59.46	1.90	293.30	398.39	503.55			
0.20	291.60	5.46	66.04	1.95	293.35	424.04	522.36			
0.25	291.65	7.23	72.90	2.00	293.40	450.63	541.39			
0.30	291.70	9.17	80.04	2.05	293.45	478.18	560.65			
0.35	291.75	11.30	87.46	2.10	293.50	506.70	580.12			
0.40	291.80	13.61	95.14	2.15	293.55	536.20	599.82			
0.45	291.85	16.12	103.10	2.20	293.60	566.69	619.74			
0.50	291.90	18.84	111.33	2.25	293.65	598.18	639.88			
0.55	291.95	21.76	119.85	2.30	293.70	630.68	660.25			
0.60	292.00	24.89	128.63	2.35	293.75	664.21	680.83			
0.65	292.05	28.26	137.68			Freeboard				
0.70	292.10	31.85	147.01	2.40	293.80	698.77	701.64			
0.75	292.15	35.67	156.61	2.45	293.85	734.40	723.25			
0.80	292.20	39.74	166.50	2.50	293.90	771.10	744.98			
0.85	292.25	44.06	176.65	2.55	293.95	808.90	766.81			
0.90	292.30	48.64	187.08	2.60	294.00	847.79	788.75			
0.95	292.35	53.49	197.77	2.65	294.05	887.77	810.80			
1.00	292.40	61.62	264.15	2.70	294.10	927.75	832.95			
1.05	292.45	75.11	275.52							
1.10	292.50	89.17	287.02							
1.15	292.55	103.81	298.66							
1.20	292.60	119.04	310.42							
1.25	292.65	134.86	322.32							
1.30	292.70	151.27	334.34							
1.35	292.75	168.30	346.50							
1.40	292.80	185.93	358.79							
1.45	292.85	204.18	371.20							
1.50	292.90	223.05	383.75							
1.55	292.95	242.56	396.43							
1.60	293.00	262.70	409.24							
1.65	293.05	283.48	422.19							
1.70 1.75	293.10 293.15	304.92 327.01	435.26 448.46							
1.75	280.10	321.01	440.40							

Summary Requirements for the Detention Pond					
Required Pool Size (Quantity and Quality Control)=	212.20+398.76	610.92	m³		
Provided Pool Size=		664.21	m³		

Rational Method

Flow Calculation for Public Ditch

20 Cairns Crescent File No. UD22-097 Town of Huntsville

Date: August 2025

Reviewed by: Iraklis Nikoletos, Ph.D.

Prepared by: Rigina Vouxinou, P.E., M.A.Sc

Input Parameters

Area Number	Area	С	Тс
	(ha)		(min.)
Drainage Area - Public Ditch	0.192	0.44	10

	(ha)		(min.)	
h	0.192	0.44	10	

Formula:	$I = a/(T+b)^{c}$						
	a,b,c	Constants					
	T	Time of concentration					
	I	Rainfall intensity					
Q=2.78 x A x C x I							

Rational Method Calculation

Туре	Area (ha)	"C"
Landscaped	0.134	0.25
Hardscaped	0.058	0.90
Total Area (A1 pre)	0.192	0.44

Event 2 yr IDF Data Set Town of Huntsville a = 789.50 b = 7.83 c = 0.83

Area Number	Α	С	AC	Tc	I	Q	Q
	(ha)			(min.)	(mm/h)	(m³/s)	(L/s)
Drainage Area - Public Ditch	0.192	0.44	0.08	10	72.3	0.017	17.0

Event 5 yr IDF Data Set Town of Huntsville a = 950.00 b = 6.75 0.82 c =

Area Number	Α	С	AC	Tc	I	Q	Q
	(ha)			(min.)	(mm/h)	(m³/s)	(L/s)
Drainage Area - Public Ditch	0.192	0.44	0.08	10	94.2	0.022	22.1

Event 10 yr IDF Data Set Town of Huntsville a = 1221.00 b = 7.38 c = 0.84

Area Number	Α	С	AC	Tc	I	Q	Q
	(ha)			(min.)	(mm/h)	(m³/s)	(L/s)
Drainage Area - Public Ditch	0.192	0.44	0.08	10	110.9	0.026	26.0

Event 25 yr IDF Data Set Town of Huntsville a = 1452.00 7.30 0.85 b = c =

Area Number	Α	С	AC	Tc	I	Q	Q
	(ha)			(min.)	(mm/h)	(m³/s)	(L/s)
Drainage Area - Public Ditch	0.192	0.44	0.08	10	128.7	0.030	30.2

Event 50 yr IDF Data Set Town of Huntsville a = 1466.00 b = 6.55 0.83 c =

AC Тс Q Q Area Number С (ha) (min.) (mm/h) (m³/s)(L/s) Drainage Area - Public Ditch 0.192 0.44 0.08 10 142.7 0.033 33.5

> Event 100 yr IDF Data Set Town of Huntsville a = 1499.00 5.81 0.83 b =

С AC Tc Q Q Area Number Α (m^3/s) (mm/h) (L/s) (ha) (min.) Drainage Area - Public Ditch 0.192 0.44 0.08 10 151.6 0.036 35.6

Rational Method

Flow Calculation for Public Culvert

20 Cairns Crescent File No. UD22-097

Town of Huntsville Date: August 2025

Prepared by: Rigina Vouxinou, P.E., M.A.Sc Reviewed by: Iraklis Nikoletos, Ph.D.

Input Parameters

С Тс Area Number Area

> (min.) (ha) 10

Drainage Area - Public Culvert 0.085 0.50

Formula:	l =	a/(T+b) ^c					
	a,b,c	Constants					
	T	Time of concentration					
	I Rainfall intensity						
Q=2.78 x A x C x I							

Rational Method Calculation

l ype	Area (ha)	"C"
Landscaped	0.057	0.30
Hardscaped	0.028	0.90
Total Area (A1 pre)	0.085	0.50

Event 2 yr IDF Data Set Town of Huntsville

c =

a = 789.50 b = 7.83 0.83

Area Number	Α	С	AC	Tc	I	Q	Q
	(ha)			(min.)	(mm/h)	(m³/s)	(L/s)
Drainage Area - Public Culvert	0.085	0.50	0.04	10	72.3	0.008	8.5

Event 5 yr a = 950.00

IDF Data Set Town of Huntsville b = 6.75

0.82 c =

Area Number	Α	С	AC	Tc	I	Q	Q
	(ha)			(min.)	(mm/h)	(m³/s)	(L/s)
Drainage Area - Public Culvert	0.085	0.50	0.04	10	94.2	0.011	11.1

Event 10 yr a = 1221.00

IDF Data Set Town of Huntsville b = 7.38 c =

0.84

0.85

0.83

Area Number	Α	С	AC	Tc	I	Q	Q
	(ha)			(min.)	(mm/h)	(m³/s)	(L/s)
Drainage Area - Public Culvert	0.085	0.50	0.04	10	110.9	0.013	13.0

Event 25 yr a = 1452.00 IDF Data Set b =

Town of Huntsville 7.30

c =

Area Number С AC Q Α Тс Q (min.) (m³/s)(ha) (mm/h) (L/s) Drainage Area - Public Culvert 0.015 0.085 0.50 0.04 10 128.7 15.1

Event 50 yr

IDF Data Set Town of Huntsville

a = 1466.00

b = 6.55

c =

Area Number	Α	С	AC	Tc	I	Q	Q
	(ha)			(min.)	(mm/h)	(m³/s)	(L/s)
Drainage Area - Public Culvert	0.085	0.50	0.04	10	142.7	0.017	16.8

Event 100 yr

IDF Data Set Town of Huntsville

a = 1499.00

b = 5.81

0.83

Area Number	Α	С	AC	Tc	ı	Q	Q
	(ha)			(min.)	(mm/h)	(m³/s)	(L/s)
Drainage Area - Public Culvert	0.085	0.50	0.04	10	151.6	0.018	17.8

Public Ditch conveyance calculations

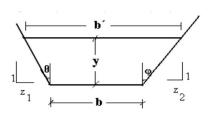
20 Cairns Crescent, Town of Huntsville File No. UD22-097

Date: August 2025
Prepared By: Rigina Vouxinou, P.E., M.A.Sc.
Reviewed by: Iraklis Nikoletos, Ph.D.

4	0.04	n (manning's factor for grass swale) =
:9	0.029	I (Slope) =
0 It/s	17.0	Q (2-year event, Tc=10min) =
1 It/s	22.1	Q (5-year event, Tc=10min) =
0 It/s	26.0	Q (10-year event, Tc=10min) =
2 It/s	30.2	Q (25-year event, Tc=10min) =
5 It/s	33.5	Q (50-year event, Tc=10min) =
6 It/s	35.6	Q (100-year event, Tc=10min) =
m	0	b=
	5.1	z ₁ =
	3	z ₂ =

Relationships for Trapezoidal Shape - Open Channel Flow

b'=Larger Base	$b' = b + y(z_1 + z_2)$
P=Wetted Perimeter	$P = b + y(\sqrt{1 + z_1^2} + \sqrt{1 + z_2^2})$
A=Wetted Area	$A = yb + \frac{(b' - b)}{2}y$


Manning's Equations for Open Channel Flow

$$Q = \frac{1}{n} A R_n^{2/3} I^{1/2} = \frac{1}{n} \frac{A^{5/3}}{P^{2/3}} I^{1/2}$$

$$V = \frac{1}{n} R_h^{2/3} I^{1/2} = \frac{1}{n} \frac{A^{2/3}}{P^{2/3}} I^{1/2}$$

$$R_h = \frac{A}{P}$$

Note: For the minimum slope, 2.90%, within the swale the full flow capacity is minimized. Therefore it is enough to prove that the swale is able to convey the 100 year storm flow for the 2.90% slope.

	ı	1		l	l	I	ı	1	ı	ı		1				
	Q (lt/s)	Q (m ³ /s)	I (%)	P(m)	A(m2)	b'	A ^{5/3}	P ^{2/3}	A ^{5/3} /P ^{2/3}	Qn/I ^{1/2}	y(m)	Swale Capacity Calculations				Check
		,		` ,	` '						• • •	P(ymax)	A(ymax)	A ^{5/3} /P ^{2/3}	Q (for ymax) (m ³ /s)	
Public Ditch (2-year event, Tc=10min)	17.0	0.0170	0.029	0.75	0.032	0.725	0.003	0.824	0.0040	0.0040	0.090					ок
Public Ditch (5-year event, Tc=10min)	22.1	0.0221	0.029	0.83	0.040	0.802	0.005	0.881	0.0052	0.0052	0.099					ОК
Public Ditch (10-year event, Tc=10min)	26.0	0.0260	0.029	0.88	0.045	0.851	0.006	0.917	0.0061	0.0061	0.105	4.88	0.36	0.065	0.275	ОК
Public Ditch (25-year event, Tc=10min)	30.2	0.0302	0.029	0.93	0.050	0.899	0.007	0.951	0.0071	0.0071	0.111	4.00	0.50	0.003	0.213	ОК
Public Ditch (50-year event, Tc=10min)	33.5	0.0335	0.029	0.97	0.054	0.936	0.008	0.977	0.0079	0.0079	0.116	1				ОК
Public Ditch (100-year event, Tc=10min)	35.6	0.0356	0.029	0.99	0.056	0.956	0.008	0.991	0.0084	0.0084	0.118					ОК

Public Culvert Calculations

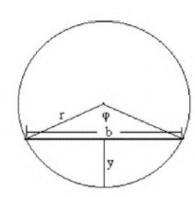
20 Cairns Crescent, Town of Huntsville File No. UD22-097

File No. UD22-097 Date: August 2025

Prepared By: Rigina Vouxinou, P.E., M.A.Sc. Reviewed by: Iraklis Nikoletos, Ph.D.

n (manning's factor for culvert) =	0.013	
l (Slope) =	0.02	
Q (2-year event, Tc=10min) =	8.5	lt/s
Q (5-year event, Tc=10min) =	11.1	lt/s
Q (10-year event, Tc=10min) =	13.0	lt/s
Q (25-year event, Tc=10min) =	15.1	lt/s
Q (50-year event, Tc=10min) =	16.8	It/s
Q (100-year event, Tc=10min) =	17.8	lt/s

Relationships for circular storm sewer


Relationships for circular s	torm sewer
b=Top Width	$b = 2\sqrt{y(2r - y)} = 2r\sin\frac{\varphi}{2}$
P=Wetted Perimeter	$P = \varphi r$
A=Wetted Area	$A = \left(\frac{Pr}{2} - \frac{b(r-y)}{2}\right) = (\varphi - \sin\varphi)\frac{r^2}{2}$

Manning's Equations for Open Channel Flow

$$Q = \frac{1}{n} A R_h^{2/3} I^{1/2} = \frac{1}{n} \frac{A^{5/3}}{P^{2/3}} I^{1/2}$$

$$V = \frac{1}{n} R_h^{2/3} I^{1/2} = \frac{1}{n} \frac{A^{2/3}}{P^{2/3}} I^{1/2}$$

$$R_h = \frac{A}{P}$$

	Q (lt/s)	Q (m³/s)	I (%)	P(m)	A(m2)	b	A ^{5/3}	P ^{2/3}	A ^{5/3} /P ^{2/3}	Qn/l ^{1/2}	y(m)		Check			
		,										P(ymax)	A(ymax)	I (%)	Q (for ymax) (m ³ /s)	
Culvert 1 (2-year event, Tc=16min)	8.5	0.0085	2.00%	0.289	0.008	0.269	0.000	0.437	0.001	0.001	0.045					OK
Culvert 1 (5-year event, Tc=16min)	11.1	0.0111	2.00%	0.309	0.010	0.285	0.000	0.457	0.001	0.001	0.051					OK
Culvert 1 (10-year event, Tc=16min)	13.0	0.0130	2.00%	0.322	0.011	0.295	0.001	0.469	0.001	0.001	0.055	0.35	0.01	0.020	0.018	OK
Culvert 1 (25-year event, Tc=16min)	15.1	0.0151	2.00%	0.337	0.013	0.306	0.001	0.484	0.001	0.001	0.060	0.33	0.01	0.020	0.010	OK
Culvert 1 (50-year event, Tc=16min)	16.8	0.0168	2.00%	0.344	0.013	0.311	0.001	0.491	0.002	0.002	0.063					ОК
Culvert 1 (100-year event, Tc=16min)	17.8	0.0178	2.00%	0.350	0.014	0.316	0.001	0.497	0.002	0.002	0.065					OK

STORM SEWER DESIGN

Whitby

20 Cairns Crescent Town of Huntsville

			Ι Δ	l R	SUM		Q	Q	STO	RM SEWE	R DESIGN	INFORMAT	ON		TIME			GROUND	UPPER	UPPER	LOWER	LOWER
Sewer Segment	FROM	то	area	runoff	AxR	100-YR	(100-YR)	(100-YR)	size	slope	lenath	Q full	Q full	V full	SECT.	CUM.	capacity (%)	ELEVATION		OBVERT	INVERT	OBVERT
			(ha)	coeff.		(mm/hr)	(m3/s)	(L/s)	(mm)	(%)	(m)	(m ³ /s)	(L/s)	(m/s)	(min.)	(min.)	1 7(/	(m)	(m)	(m)	(m)	(m)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8) = (6) x (7)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)
															Initial TC=	10.00						
#1	STORM MH1	STORM MH2	0.214	0.69	0.1477	153.7	0.0630	63.04	450	1.20	34.7	0.312	312.32	1.964	0.29	10.29	20.2%	298.75	296.38	296.83	295.96	296.41
#2	STORM MH2	STORM MH3	0.445	0.77	0.3427	151.4	0.1441	144.08	450	1.00	45.6	0.285	285.11	1.793	0.42	10.72	50.5%	298.02	295.86	296.31	295.40	295.85
#3	STORM MH 4	STORM MH3	0.123	0.89	0.1095	153.7	0.0467	46.74	300	1.00	17.8	0.097	96.70	1.368	0.22	10.22	48.3%	297.30	295.28	295.58	295.10	295.40
#4	STORM MH3	STORM MH5	0.568	0.79	0.4487	152.0	0.1894	189.44	450	2.50	41.6	0.451	450.79	2.834	0.24	10.46	42.0%	297.05	295.00	295.45	293.96	294.41
#5	СВМНЗ	CBMH2	0.117	0.27	0.0316	153.7	0.0135	13.49	300	2.50	45.6	0.153	152.90	2.163	0.35	10.35	8.8%	301.85	299.95	300.25	298.81	299.11
#6	CBMH2	CBMH1	0.227	0.27	0.0613	150.9	0.0257	25.70	300	2.00	37.0	0.137	136.76	1.935	0.32	10.67	18.8%	300.45	298.78	299.08	298.04	298.34
#7	CBMH1	STORM MH5	0.376	0.27	0.1015	148.5	0.0419	41.89	300	2.70	29.3	0.159	158.90	2.248	0.22	10.89	26.4%	299.30	294.87	295.17	294.08	294.38
#8	STORM MH5	DETENTION POND	1.231	0.64	0.7878	150.1	0.3285	328.48	525	2.00	20.9	0.608	608.20	2.810	0.12	10.59	54.0%	295.65	293.57	294.10	293.15	293.68
#9	STORM MH9	STORM MH8	0.148	0.51	0.0755	153.7	0.0322	32.23	300	0.50	37.7	0.068	68.38	0.967	0.65	10.65	47.1%	293.77	292.15	292.45	291.96	292.26
#10	STORM MH8	STORM MH7	0.197	0.46	0.0906	148.7	0.0374	37.43	300	0.50	37.7	0.068	68.38	0.967	0.65	11.30	54.7%	294.30	291.93	292.23	291.74	292.04
#11	STORM MH7	STORM MH6	0.197	0.46	0.0906	144.0	0.0363	36.25	300	0.50	30.1	0.068	68.38	0.967	0.52	11.82	53.0%	294.30	291.68	291.98	291.53	291.83
#12	STORM MH6	DETENTION POND	0.197	0.46	0.0906	140.5	0.0354	35.37	300	0.50	14.2	0.068	68.38	0.967	0.24	12.06	51.7%	294.15	291.47	291.77	291.40	291.70

- NOTES:

 1. The above calculations assume storm flow from the proposed site for the 100-year storm event.

 2. This calculation assumes that the proposed development will be connected to the proposed detention pond.

 3. Roughness coefficient n = 0.013

Appendix D

Sanitary Data Analysis

SANITARY SEWER DESIGN SHEET

20 Cairns Crescent TOWN OF HUNTSVILLE

Total Sanitary Net Flow

5.32

																	/	
	<u> </u>	RESIDENTIAL					FLOW							SEWER DESIGN				
	SECTION	RESIDENTIAL	NUMBER OF UNITS	SECTION	TOTAL	AVERAGE	HARMON	RES. PEAK	TOTAL	INFILT.	TOTAL	TOTAL	PIPE	PIPE		FULL FLOW	% of DESIG	
LOCATION	AREA	USE AREA	Apartments	POP.	ACCUM. POP.	RESIDENTIAL FLOW '@' 450	PEAKING FACTOR	FLOW	ACCUM. AREA	@ 0.28 L/s/ha.	SANITARY FLOW	DESIGN	LENGTH	DIA.	SLOPE		CAPACITY	
	 	1	1	1		L/c/d	170.0					FLOW	1			n = 0.013	,	
	(ha.)	(ha.)	<u> </u>	(persons)	(persons)	(L/s)		(L/s)	(ha.)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(L/sec)	(%)	
Column number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
Existing Condition		1																
Undeveloped land	2.169	0	0	0	0	0.00	4.50	0.00	2.169	0.607	0.000	0.61						
Proposed Condition																		
Residential use	2.169	1.035	176	248	248	1.29	4.11	5.32	2.169	0.607	5.321	5.93						
	,	1	1	1							•	,	1				,	
Population Doneity = 240 porso	no/bo																	

Population Density = 240 persons/ha Residential Flow Rate - 450 litres/capita/day Commercial Flow Rate - 28 m³/hactares/day

Infiltration - 0.28 L/ha

Peaking Factor = $1 + [14 / (4 + P^{0.5})]$, P=Population in thousands

Site Area (ha):

2.169

Prepared by: Stergios Grigoriadis, P.E., M.A.Sc. Reviewed by: Anastasia Tzakopoulou, P.E., M.A.Sc.

Date: August 2025

Project: 20 Cairns Crescent

Project: UD22-097

Town of Huntsville

Sheet 1 OF 1

Appendix E

Water Data Analysis

WATER DEMAND

20 Cairns Crescent

File No: UD22-097 Date: August 2025

Prepared by: Stergios Grigoriadis, P.E., M.A.Sc. Reviewed by: Anastasia Tzakopoulou, P.Eng., M.A.Sc.

Fire Flow Calculation

1 F= 220 C (A)^{1/2}

Where F= Fire flow in Lpm

C= construction type coefficient

= 0.8 Non-combustible Construction

A = total floor area in sq.m.

 Level 1=
 3179.8 m²
 25%

 Level 2=
 3136.5 m²
 100%

 Level 3=
 3136.5 m²
 25%

Note: The levels indicated, reference the floors with the largest areas (refer to building stats)

= 4,716 sq.m.

F = 12,085.94 L/min F(No.1) = 220C VA

F = 12,000 L/min F(No.1) Round to nearest 1000 l/min

2 Occupancy Reduction

25% reduction for non-combustible occupancy

F = 9000 L/min $F(No.2) = F(No.1) \times occupancy \ reduction/charge(%)$

3 Sprinkler Reduction

30% Reduction for NFPA Sprinkler System

F = 6300 l/min $F(No.3) = F(No.2) \times \text{sprinkler reduction}(\%)$

4 Separation Charge

15% North 10.1m to 20m 15% East 10.1m to 20m 0% South > 30 m 0% West > 30 m 30% Total Separation Charge

F = 2,700.00 L/min $F (No.4) = F(No.2) \times \text{separation charge(%)}$

F = 9,000.00 L/min F (tot) = F(No.3) + F(No.4)

= 2378 US GPM

Domestic Flow Calculations

Population = 248 Persons (from sanitary design sheet for Residential)

Average Day Demand = 450 L/cap/day 1 US Gallon=3.785 L

Residential Flow= 1.29 L/s

Retail/Commercial Area= 0.000 m² (from sanitary design sheet for Commercial)

Average Day Demand= 2.8 L/m²/day

Retail/Commercial Flow= - L/s 1 US GPM=15.852L/s

Total Flow= 1.29 L/s = 20.13 US GPM

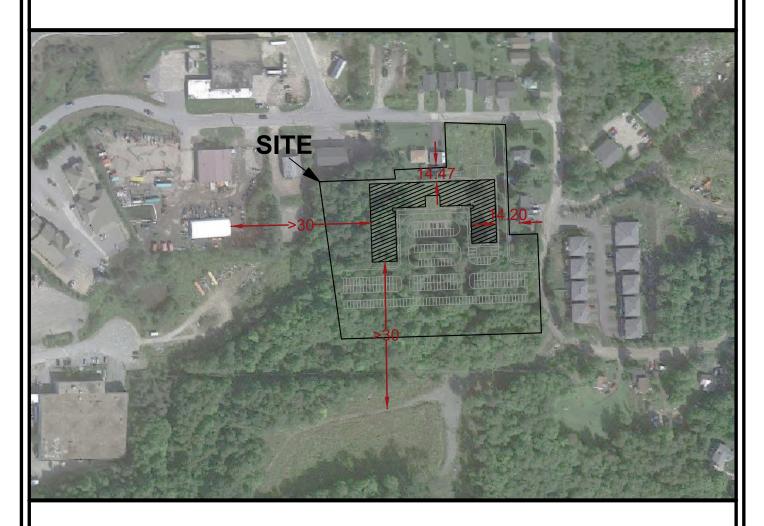
Max. Daily Demand Peaking Factor = 2.75 (For residential)

Max. Daily Demand = 3.55 L/s = 56 US GPM

Max. Hourly Demand Peaking Factor = 4.13

or

Max. Hourly Demand = 5.33 L/s = 85 US GPM


Max Daily Demand = 3.55 L/s Fire Flow = 150.00 L/s

Required 'Design' Flow = 153.55 L/s Note: Required 'Design' Flow is the maximum of either:

2434 US GPM 1) Fire Flow + Maximum Daily Demand

2) Maximum Hourly Demand

SEPARATION DISTANCES
RESIDENTIAL USE DEVELOPMENT
20 CAIRNS CRESCENT
HUNTSVILLE, ONTARIO

	DATE:	AUGUST 2025	PROJECT No:	UD22-097
150 Bermondsey Road, North York, Ontario, M4A 1Y1	SCALE:	N.T.S.	FIGURE No:	FIG 3